Localized Buckling Solutions for Thin-Gauge UHSS Bumper Beams

Detroit Engineered Products (DEP)
Madhu Jampala
Avineet Ponde
Scope

• Use of UHSS to down gauge production bumper beams for maximum mass savings.
• Address localized buckling issues and achieve greater mass savings with geometry optimization.

3 Different Bumper Systems Evaluated:

• Roll-formed Bumper
• Hot-stamped Bumper
• Hot-formed Bumper (ACCRA)
Optimization Process

- Input – CAD/STL/FE
- FE Model Creation
- 3 Point Bending Test
- IIHS Low Speed Impact
- Parameterization
 - DEP - Meshworks
- DOE
- Optimization
- Final Optimized Design
ROLL FORMED BUMPER
Bill Of Materials – Baseline

Roll Formed Production Bumper Baseline System – FEA Model

<table>
<thead>
<tr>
<th>Part NO.</th>
<th>Component Name</th>
<th>Component Thickness (mm)</th>
<th>Yield Stress (Mpa)</th>
<th>Mass (Kgs)</th>
<th>MATERIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Crush Can</td>
<td>1.5</td>
<td>358.5</td>
<td>0.80</td>
<td>CR340</td>
</tr>
<tr>
<td>2</td>
<td>Crush Can Back Plate</td>
<td>3.9</td>
<td>358.5</td>
<td>0.81</td>
<td>CR340</td>
</tr>
<tr>
<td>3</td>
<td>Bumper Back Plate 1</td>
<td>2.5</td>
<td>358.5</td>
<td>0.25</td>
<td>CR340</td>
</tr>
<tr>
<td>4</td>
<td>Bumper Back Plate 2</td>
<td>2</td>
<td>358.5</td>
<td>0.48</td>
<td>CR340</td>
</tr>
<tr>
<td>5</td>
<td>Clip</td>
<td>1</td>
<td>507</td>
<td>0.02</td>
<td>DP780</td>
</tr>
<tr>
<td>6</td>
<td>Bumper Beam</td>
<td>1.2</td>
<td>507</td>
<td>3.22</td>
<td>DP780</td>
</tr>
<tr>
<td>7</td>
<td>MIG Weld</td>
<td></td>
<td></td>
<td>0.29</td>
<td>Spot weld Mat</td>
</tr>
</tbody>
</table>

Vehicle Mass= 1558 Kg Beam Span = 1205 mm System Mass = 5.87 Kg
3 – Point Bending Results

<table>
<thead>
<tr>
<th>Thickness (mm)</th>
<th>DP780</th>
<th>DP1180</th>
<th>MS1300</th>
<th>MS1500</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
<td>7.2</td>
<td>12</td>
<td>13.3</td>
<td>14.9</td>
</tr>
<tr>
<td>1.15</td>
<td>10.7</td>
<td>11.6</td>
<td>13.2</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>9</td>
<td>9.8</td>
<td>11.1</td>
<td></td>
</tr>
<tr>
<td>1.05</td>
<td>8.5</td>
<td>9.3</td>
<td>10.5</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>8.7</td>
<td>9.9</td>
<td></td>
</tr>
<tr>
<td>0.95</td>
<td>7.4</td>
<td>8.2</td>
<td>9.1</td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td>6.6</td>
<td>7.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.85</td>
<td>5.2</td>
<td>5.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bumper Beam Mass

- 3.27 Kg
- 2.59 Kg
- 2.45 Kg

Mass Savings

- 0.68 Kg
- 0.82 Kg

The gauge for which the bumper beam performance is matched to the Baseline performance lies between 0.85mm to 0.9mm
IIHS Curved Barrier Results (10 km/hr)

DP 780 Baseline - 1.2 mm
- Local Buckling
- Peak force = 15.4 KN

MS1300 - 0.9 mm
- Local Buckling
- Peak force = 16.2 KN
Geometry Optimization

Bottom Bead 1

Parametric FE Model - Meshworks

Top Bead 1

Bottom Bead 2

Top Bead 2

Central Bead Hinge
Dimple Study

6-Rows Dimples

Dimples Diameter = 5mm
Dimples Depth = 1mm
Dimples Pitch = 20mm

Dimples Diameter = 7.5mm
Dimples Depth = 2mm
Dimples Pitch = 35mm

Dimples Diameter = 10mm
Dimples Depth = 2.5mm
Dimples Pitch = 50mm

4-Rows Dimples

Dimples Diameter = 12.5 mm
Dimples Depth = 3mm
Dimples Pitch = 65mm

Dimples Diameter = 12.5 & 15mm
Dimples Depth = 3 & 3.5mm
Dimples Pitch = 80mm

Dimples Diameter = 12.5 & 17.5mm
Dimples Depth = 3 & 4mm
Dimples Pitch = 95mm

Dimples Diameter = 12.5 & 20mm
Dimples Depth = 3 & 4.5mm
Dimples Pitch = 110mm

Dimples Diameter = 12.5 mm
Dimples Depth = 3mm
Dimples Pitch = 65mm
Optimization Setup

• Optimization carried out for the IIHS Curved Barrier
• Design Variables – 25
 – Bead Shape Parameters - 17
 – Dimples Shape Parameters - 4
 – Gauge Parameters - 2
 – MAT Parameters - 2
• DOE Matrix Generated 222 designs
• Response surface created and optimized for the below scenarios
 – Minimize Mass and Maximize 1st peak Bumper Force
 – Zero Local Buckling Distance
Optimized Design

Optimized Beam
0.8 mm MS1500
Mass: 2.28 Kg (-29%)

Peak force = 15.4KN
IIHS Curved Barrier Comparison

Baseline – DP780

Baseline

Peak force = 15.4 KN

Optimized Design – MS1500

Optimized

Peak force = 15.4KN
Design Variable Sensitivity

Most Influence: Top Bead Height & Width

Least Influence: Bottom Bead Hinge & Width
IIHS Curved Barrier Results Summary

<table>
<thead>
<tr>
<th>Description</th>
<th>Baseline - DP780</th>
<th>Optimized Design - MS1500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bumper Beam 1st Peak Force (kN)</td>
<td>15.4</td>
<td>15.4</td>
</tr>
<tr>
<td>Bumper Beam Thickness (mm)</td>
<td>1.2</td>
<td>0.8</td>
</tr>
<tr>
<td>Local Buckling Distance (mm)</td>
<td>47</td>
<td>3.4</td>
</tr>
<tr>
<td>Back Plate Distance (mm)</td>
<td>127.7</td>
<td>125.4</td>
</tr>
<tr>
<td>Bumper Beam Mass (Kg)</td>
<td>3.22</td>
<td>2.28 (-29%)</td>
</tr>
<tr>
<td>Total Mass (Kg)</td>
<td>5.87</td>
<td>4.95 (-16%)</td>
</tr>
</tbody>
</table>
Conclusions

- A lightweight bumper beam was achieved with 29% mass savings and no localized buckling.
- 19% of the mass savings was due to MS1500 material and the other 10% was from geometry optimization.
- Dimples helped reduce mass but did not solve localized buckling issue.
- The design parameters with the largest influence on improving localized buckling were top bead height and width.
- The design parameters with the least influence on improving localized buckling were bottom bead hinge and width.
HOT-STAMPED BUMPER
Bill of Materials - Baseline

Hot-Stamped Production Bumper Baseline System – FEA Model

<table>
<thead>
<tr>
<th>Sl No</th>
<th>Component Name</th>
<th>Component Thickness (mm)</th>
<th>Yield Stress (MPa)</th>
<th>MASS (Kg)</th>
<th>MATERIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Crush Can</td>
<td>1.5</td>
<td>408</td>
<td>0.85</td>
<td>DP590</td>
</tr>
<tr>
<td>2</td>
<td>Crush Can Back Plate</td>
<td>2.5</td>
<td>408</td>
<td>0.69</td>
<td>HSLA340</td>
</tr>
<tr>
<td>3</td>
<td>Bumper Back Plate</td>
<td>1.5</td>
<td>408</td>
<td>1.01</td>
<td>DP590</td>
</tr>
<tr>
<td>4</td>
<td>Bumper Beam</td>
<td>1.5</td>
<td>962</td>
<td>2.32</td>
<td>PHS1300</td>
</tr>
<tr>
<td>5</td>
<td>MIG Weld</td>
<td></td>
<td></td>
<td>0.13</td>
<td>Weld Mat</td>
</tr>
</tbody>
</table>

Vehicle Mass = 906 Kg Beam Spam = 1166 mm System Mass = 5.00 Kg
3-Point Bending Results

<table>
<thead>
<tr>
<th>Thickness (mm)</th>
<th>Bumper Beam</th>
<th>Back Plate</th>
<th>PHS 1300</th>
<th>PHS 1900</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>1.5</td>
<td>14.28</td>
<td>18.29</td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td>1.3</td>
<td>16.63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td>1.2</td>
<td>16.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>1.4</td>
<td>14.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>1.3</td>
<td>14.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>1.2</td>
<td>14.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>1.1</td>
<td>14.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>1.0</td>
<td>14.26</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Bumper Beam Mass | 4.08 | 3.31 |

| Mass Savings | **0.77 kg (-19%)** |
IIHS Curved Barrier (10 km/hr)

Baseline - PHS1300
- Bumper: 1.5 mm
- Back Plate: 1.5 mm
- Mass: 3.33 Kg
- Peak force: 14.0 kN

PHS1900
- Bumper: 1.5 mm
- Back Plate: 1.0 mm
- Mass: 2.69 Kg
- Peak force: 13.8 kN
Geometry Optimization

- Bottom Bead Height
- Top Bead Height
- Middle Bead Width
- Middle Bead Height
- Back Plate Beads

Parametric FE Model - Meshworks
Optimization Setup

- Optimization carried out for the IIHS Curved Barrier
- Design variables – 52
 - Shape Parameters - 25
 - Gauge Parameters - 26
 - TRB Parameter - 1
- DOE Matrix Generated 277 Designs
- Response surface created and optimized for the below scenarios
 - Minimize Mass and Maximize 1st Peak Bumper Force
 - Zero Local Buckling Distance
Optimized Design

Peak force = 14.7 kN

Optimized Beam
Beam: 1.2 mm PHS1900
Back Plate: 0.7 mm DP980
Mass: 2.21 kg (-33%)

*Back-plate material upgraded to DP 980
*Bumper flanges eliminated for mass-savings
IIHS Curved Barrier Comparison

Baseline – PHS1300

Optimized Design – PHS1900

Baseline

Peak force = 14.0 kN

Optimized

Peak force = 14.7 kN
• The boxed areas of the beam need to be strong and hence higher gauges need to be used in these areas
Design Variable Sensitivity

Shape Variable Sensitivity

1. Middle Bead Width & Back Plate Beads are the most influencing shape variables.
2. Bottom Bead Height Parameters may not give positive results.

Most Influence: Middle bead width and back-plate beads

Least Influence: Bottom Bead Height

*** Blue – Positive Effect (increase in value will give better performance)

*** RED – Negative Effect (increase in value may decrease in performance)
IIHS Curved Barrier Results Summary

<table>
<thead>
<tr>
<th>Description</th>
<th>Baseline - PHS1300</th>
<th>Optimized Design - PHS1900</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bumper Beam 1st Peak (kN)</td>
<td>14.0</td>
<td>14.7</td>
</tr>
<tr>
<td>Bumper Beam & Back Plate Thickness (mm)</td>
<td>1.5 / 1.5</td>
<td>1.2 / 0.7</td>
</tr>
<tr>
<td>Bumper Beam Mass (kg)</td>
<td>3.33</td>
<td>2.21 (-33%)</td>
</tr>
<tr>
<td>Total Mass (kg)</td>
<td>5.00</td>
<td>3.87 (-23%)</td>
</tr>
</tbody>
</table>
Conclusions

- A lightweight bumper beam was achieved with 33% mass savings and no localized buckling.

- 19% of this mass savings was due to PHS1900 material and the other 14% was from geometry optimization.

- Using TRB resulted in an additional 4% mass savings for the bumper beam. However, this was not judged high enough to justify additional processing cost.

- The design parameters with the largest influence on improving localized buckling were middle bead width and back – plate beads.

- The design parameter with the least influence on improving localized buckling was bottom bead height.
HOT-FORMED BUMPER
(ACCRA™)
Bill of Materials – Baseline

Hot Formed Production Bumper Baseline System – FEA Model

<table>
<thead>
<tr>
<th>Sl No</th>
<th>Component Name</th>
<th>Thickness (mm)</th>
<th>Yield Stress (MPa)</th>
<th>Mass (Kg)</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Back Plate</td>
<td>2.0</td>
<td>358</td>
<td>0.92</td>
<td>CR340</td>
</tr>
<tr>
<td>3</td>
<td>Bumper</td>
<td>1.2</td>
<td>962</td>
<td>4.59</td>
<td>PHS1500</td>
</tr>
<tr>
<td>4</td>
<td>Spot & MIG Weld</td>
<td></td>
<td></td>
<td>0.002</td>
<td>Weld Mat</td>
</tr>
</tbody>
</table>

Vehicle Mass = 1678 Kg
Beam Spam = 1105 mm
System Mass = 5.51 Kg
3 – Point Bending Results

<table>
<thead>
<tr>
<th>Thickness (mm)</th>
<th>Peak Force (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bumper Beam</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>33.02</td>
</tr>
<tr>
<td>1.15</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>1.05</td>
<td></td>
</tr>
<tr>
<td>Bumper Beam Mass</td>
<td>4.96</td>
</tr>
<tr>
<td>Mass Savings</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Bumper Beam Mass: 4.96 kN for PHS 1500, 4.34 kN for PHS 1900.
- Mass Savings: 12.5%.
IIHS Curved Barrier (10 km/hr)

PHS1300 Baseline – 1.2 mm

PHS1900 – 1.05 mm

Peak force = 140.0 kN

Peak Force = 154.0 kN
Geometry Optimization

Top_Bead_Height_1 Bottom_Bead_Height_1 Top_Bead_Width_1 Bottom_Bead_Width_1 Center_Bead_width_Parameter

Parametric FE Model - Meshworks

Taper_Parameter_2 Taper_Parameter_1 Center_Uniform_Section Back_Bead Hinge_Parameter

Steel Matters Demand Nothing Less www.autosteel.org
Optimization Setup

• Optimization carried out for the IIHS Curved Barrier
• Design variables – 15
 – Shape Parameters -14
 – Gauge Parameters - 1
• DOE Matrix Generated 81 Designs
• Response surface created and optimized for the below scenarios
 – Minimize Mass and Maximize 1st Peak Bumper Force
 – Zero Local Buckling Distance
Optimized Design

End Section Center Section

94 mm 107 mm
54 mm 57.8 mm

Optimized Beam
0.95 mm PHS1900
Mass: 3.53 Kg (-23%)
IIHS Curved Barrier

Baseline – PHS1300

Optimized Design – PHS1900

Baseline

Peak Force = 140 kN

Optimized Design

Peak Force = 147 kN
Design Variable Sensitivity

Shape Variable Sensitivity

Most Influence

- Top Bead Height
- Back Bead
- Taper Parameter
- Bottom Bead Width 1
- Hinge Parameter

Least Influence
IIHS Curved Barrier Results Summary

<table>
<thead>
<tr>
<th>Description</th>
<th>Baseline - PHS1300</th>
<th>Optimized Design - PHS1900</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bumper Beam 1st Peak (kN)</td>
<td>140</td>
<td>147</td>
</tr>
<tr>
<td>Bumper Beam Thickness (mm)</td>
<td>1.2</td>
<td>0.95</td>
</tr>
<tr>
<td>Bumper Beam Mass (kg)</td>
<td>4.59</td>
<td>3.53 (-23%)</td>
</tr>
<tr>
<td>Total Mass (kg)</td>
<td>5.51</td>
<td>4.48 (-19%)</td>
</tr>
</tbody>
</table>
Conclusions

- A lightweight bumper beam was achieved with 23% mass savings and no localized buckling.

- 12% of this mass savings was due to PHS1900 material and the other 11% was from geometry optimization.

- The design parameters with the largest influence on improving localized buckling were top bead height, back bead and taper.

- The design parameters with the least influence on improving localized buckling were hinge parameter and bottom bead width.
Mass Summary

- Mass savings after optimizing the 3 bumper beams for IIHS curved barrier are below:

<table>
<thead>
<tr>
<th>Bumper Beam Design</th>
<th>Baseline Beam</th>
<th>Optimized Beam</th>
<th>Percent Mass Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roll - Formed</td>
<td>Material: DP 780</td>
<td>Material: MS 1500</td>
<td>Total = 29 %</td>
</tr>
<tr>
<td></td>
<td>Gauge = 1.2 mm</td>
<td>Gauge = 0.8 mm</td>
<td>Grade Effect</td>
</tr>
<tr>
<td></td>
<td>Mass = 3.22 kg</td>
<td>Mass = 2.28 kg</td>
<td>19</td>
</tr>
<tr>
<td>Hot - Stamped</td>
<td>Material: PHS 1300 (beam)</td>
<td>Material: PHS 1900 (beam)</td>
<td>Total = 33 %</td>
</tr>
<tr>
<td></td>
<td>DP590 (back plate)</td>
<td>DP 980 (back plate)</td>
<td>Grade Effect</td>
</tr>
<tr>
<td></td>
<td>Bumper Beam Gauge = 1.5mm Back Plate Gauge = 1.5 mm</td>
<td>Bumper Beam = 1.2 mm Back Plate Gauge = 0.7 mm</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Mass = 3.33 kg</td>
<td>Mass = 2.21 kg</td>
<td></td>
</tr>
<tr>
<td>Hot - Formed</td>
<td>Material: PHS 1300</td>
<td>Material: PHS 1900</td>
<td>Total = 23 %</td>
</tr>
<tr>
<td></td>
<td>Gauge = 1.2 mm</td>
<td>Gauge = 0.95 mm</td>
<td>Grade Effect</td>
</tr>
<tr>
<td></td>
<td>Mass = 4.59 kg</td>
<td>Mass = 3.53 kg</td>
<td>12</td>
</tr>
</tbody>
</table>
Presentations will be available May 18 at www.autosteel.org

Great Designs in Steel is Sponsored by: