WorldAutoSteel Membership

automotive group of the worldsteel

Ansteel
ArcelorMittal
Baosteel
China Steel
Corus-Tata
JFE

Hyundai-Steel
Kobe
Nippon Steel
NUCOR
POSCO
Severstal

Sumitomo
ThyssenKrupp
USIMINAS
U. S. Steel
voestalpine
Today’s Presentation

• Past steel projects and impact on vehicle structures

• The new drivers of structural design

• Future Steel Vehicle
 - Objectives
 - Design methodology
 - Preliminary results

• Conclusions
Investment in Automotive

ULSAB
UltraLight Steel Auto Body

ULSAC
UltraLight Steel Auto Closures

ULSAS
UltraLight Steel Auto Suspensions

ULSAB-AVC
Advanced Vehicle Concepts

$60 Million
Impact of AHSS Solutions

Body Structure Weight vs. Gross Vehicle Weight

Body Structure: W/O Closures + IP Beam + Engine Cradle
450 Kg

2001-2003 Steel BIW
2004-2008 Steel BIW
2004-2008 Top 10 Steel BIW

(a2mac1 database 2001-2008 production vehicles)
Impact of AHSS Solutions

Body Structure Weight vs. Gross Vehicle Weight

Body Structure: W/O Closures + IP Beam + Engine Cradle
450 Kg

2001-2003 Steel BIW
2004-2008 Top 10 Steel BIW
Aluminium

-28% -9%

(a2mac1 database 2001-2008 production vehicles)
Impact of AHSS Solutions

Growth of AHSS

Source: Ducker Worldwide
Body Structure Weight vs. Gross Vehicle Weight

Body Structure: W/O Closures + IP Beam + Engine Cradle
450 Kg

2001-2003 Steel BIW
2004-2008 Top 10 Steel BIW
Aluminium

(a2mac1 database 2001-2008 production vehicles)
Investment in Automotive

Future Steel Vehicle

ULSAB
UltraLight Steel Auto Body

ULSAC
UltraLight Steel Auto Closures

ULSAS
UltraLight Steel Auto Suspensions

ULSAB-AVC
Advanced Vehicle Concepts

www.worldautosteel.org
Why Future Steel Vehicle?

Automotive CO₂ Emissions Regulation.

Source: International Council on Clean Transportation

<table>
<thead>
<tr>
<th>Year</th>
<th>USA</th>
<th>Japan</th>
<th>Europe</th>
<th>Australia</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>260</td>
<td>220</td>
<td>180</td>
<td>200</td>
</tr>
<tr>
<td>2006</td>
<td>240</td>
<td>190</td>
<td>160</td>
<td>190</td>
</tr>
<tr>
<td>2009</td>
<td>220</td>
<td>170</td>
<td>140</td>
<td>180</td>
</tr>
<tr>
<td>2012</td>
<td>200</td>
<td>150</td>
<td>120</td>
<td>170</td>
</tr>
<tr>
<td>2015</td>
<td>180</td>
<td>130</td>
<td>100</td>
<td>160</td>
</tr>
<tr>
<td>2018</td>
<td>160</td>
<td>120</td>
<td>90</td>
<td>150</td>
</tr>
<tr>
<td>2021</td>
<td>140</td>
<td>100</td>
<td>80</td>
<td>130</td>
</tr>
<tr>
<td>2024</td>
<td>120</td>
<td>90</td>
<td>60</td>
<td>120</td>
</tr>
<tr>
<td>2027</td>
<td>100</td>
<td>80</td>
<td>40</td>
<td>100</td>
</tr>
<tr>
<td>2030</td>
<td>80</td>
<td>60</td>
<td>20</td>
<td>80</td>
</tr>
</tbody>
</table>
Why Future Steel Vehicle?

Early Introductions of Dedicated Platform Advanced Powertrain Vehicles

- Honda Clarity FCX
- Mercedes E cell Plus
- Mercedes F cell
Why Future Steel Vehicle?

Body Structure Weight vs. Gross Vehicle Weight

Body Structure: W/O Closures + IP Beam + Engine Cradle
450 Kg

2001-2003 Steel BIW
2004-2008 Top 10 Steel BIW
Aluminium
SLC (Super Light Car)

1. SLC states 35% mass reduction (= €7.80 / kg)

(a2mac1 database 2001-2008 production vehicles)

WorldAutoSteel
www.worldautosteel.org

FutureSteelVehicle
Will provide steel solutions to address:

- Future emissions regulations
- Advanced powertrains vehicles
- Competitive material solutions for 2015 to 2020
FSV Steel Technologies

FSV’s Steel Portfolio

Mild 140/270	DP 350/600	TRIP 600/980
BH 210/340	TRIP 350/600	TWIP 500/980
BH 260/370	SF 570/640	DP 700/1000
BH 280/400	HSLA 550/650	CP 800/1000
IF 260/410	TRIP 400/700	MS 950/1200
IF 300/420	SF 600/780	CP 1000/1200
DP300/500	CP 500/800	DP 1150/1270
FB 330/450	DP 500/800	MS 1150/1400
HSLA 350/450	TRIP 450/800	CP 1050/1470
HSLA 420/500	CP 600/900	HF 1050/1500
FB 450/600	CP 750/900	MS 1250/1500
HSLA 490/600		

Expanded range of steel grades

- Denotes steel included in ULSAB-AVC
- Denotes steel grades added for FSV
What’s New?

Broad Bandwidth of Manufacturing Options

- Conventional Stamping
- Laser Welded Blank
- Tailor Rolled Blank
- High Frequency Induction Welded Hydroformed Tubes
- Laser Welded Hydroformed Tubes
- Tailor Rolled Hydroformed Tubes
- Hot Stamping (Direct & In-Direct
- Laser Welded Blank Quench Steel
- Tailor rolled Blank Quench Steel
- Roll Forming
- Laser Welded Coil roll Formed
- Tailor rolled Blank Roll Formed
- Roll Form with Quench
- Multi Walled Hydroformed Tubes
- Multi Walled Tubes
- Laser Welded Finalized Tubes
- Laser Welded Tube Profiled Sections
What’s New?

Design Optimization

Light Weight Front End Structure

2007 GDIS

Donor Vehicle

Donor Vehicle Rail
Rail: 16.34kg

A/SP LWB Concept

TWT Concepts

Mass Reduction

22.4%

32.0%
What’s New?

Design Optimization

Light Weight Body
Structural Optimization Process

2008 GDIS
Topology Optimization used to define Major Load Paths

Packaging Volume
Holistic Drivers
• Safety
• NVH Refinement
• Durability

Topology Results
Spatial load image

Beam Model
87 paths

BIW Design
202 components

WorldAutoSteel
www.worldautosteel.org

FutureSteelVehicle

American Iron and Steel Institute
What’s New?

Design Optimization

Future Generation Passenger Compartment

2009 GDIS

Multidiscipline Optimization (Grade, Gauge, Geometry)

Passenger Compartment Mass

- Baseline: 264.7 Kg
- Optimized Design: 224.9 Kg
- Optimized w/ Maximum Adhesive Benefit: 210.6 Kg

- Mild: 77%
- HSLA: 17%
- Dual Phase: 4%
- Martensitic/Bainitic: 2%

Future Steel Vehicle

WorldAutoSteel

www.worldautosteel.org
What’s New?

Design Optimization

FutureSteelVehicle Pilot Program 2009 GDIS

Donor Vehicle

Mass Reduction

22.4%

32%

45%

Donor Vehicle Rail

A/SP LWB Concept

TWT Concepts

FSV Pilot Project

Topography Optimization

FutureSteelVehicle

American Iron and Steel Institute
Lightweighting technologies

• Expanded materials portfolio

• Expanded manufacturing technology portfolio.

• Aggressive design optimization technologies
FSV Design Drivers

Manufacturing Cost

$
FSV Design Drivers

Mass Reduction

for fuel economy and emissions reduction

Source: International Council on Clean Transportation

Source: Argon National Lab
FSV Design Methodology

Phase 1 – Technology Assessment
Powertrain Layout
Styling & CFD
Topology Optimization
Low-Fidelity 3G Design Optimization

Phase 2 - Report & Decision for Phase 3
Final Design Confirmation FEA
Gauge Optimization
Detail Design

Body Structure Sub-System Optimization
Design Confirmation FEA

T1
T2
T3
T4
T5
T6
Benchmarking
Size and type of vehicle (2020)
Performance
NA-Europe-Asia
(EDAG, Germany, India & China)

Technology Assessment
Latest auto technologies
Low rolling resistance tires
Light weight
Glass
Seats
LED Lighting & Displays

Technology Assessment
Batteries
Wheel motors
Drive by wire
Fuel cell
Hydrogen storage and infrastructure (Corland Study?)
E85 and bio-diesel

OEM’s
Directions
Trends

Styling / CFD CAE
Future (2020) safety and structural:
Performance requirements
Future CO2/fuel efficiency requirements

Environmental Impact
CO₂ greenhouse gasses
Well to wheel efficiency
Life cycle assessment
Energy sources and usage
CO₂ sequestration

Drive Train Module
Technical Specs
Quantum
SFCV / Tongji

worldsteel Existing and Ongoing Programs
ULSAB
ULSAC
ULSAS
ULSAB-AVC
FPC
Weight Compounding-ASD

Phase 1 Deliverables
Vehicle Package
VTS (Vehicle Tech Spec)
Plug-in hybrid
Fuel cell hybrid
Electrical vehicle

Structural Optimization

Light Weight AHSS Body Structure Concepts
and
New Opportunities for Steel

Source: FSV Phase 1 report
FSV Advanced Powertrain Options

Worldwide over 70% market share between two vehicle sizes: Small cars (up to 4,000mm, A/B class) and Mid-Class cars (up to 4,900mm, C/D class)

<table>
<thead>
<tr>
<th>Vehicle</th>
<th>Front Leg Room (mm)</th>
<th>Rear Leg Room (mm)</th>
<th>Luggage (Liters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSV 1</td>
<td>1065</td>
<td>825</td>
<td>250</td>
</tr>
<tr>
<td>FSV 2</td>
<td>1065</td>
<td>925</td>
<td>370</td>
</tr>
</tbody>
</table>

FSV 1
4-door hatchback
3700 mm

FSV 2
4-door sedan
4350 mm

PHEV20
Electric Range: 32km
Total: 500km
Max Speed: 150km/h
0-100 km/h 11-13 s

BEV
Total Range: 250km
Max Speed: 150km/h
0-100 km/h 11-13 s

PHEV40
Electric Range: 64km
Total: 500km
Max Speed: 161km/h
0-100 km/h 10-12 s

FCEV
Total Range: 500km
Max Speed: 161km/h
0-100 km/h 10-12 s
FSV Battery Electric Vehicle (BEV)

Required battery size for 250 km driving range:

FSV – BEV Battery design options

Battery Pack
Energy density 130 Wh/kg

Battery Pack
Energy density 180 Wh/kg

Intermediate shape 160 liters

T shape 277 liters

I shape 166 liters
FSV Safety Requirements

Meet or exceed existing & upcoming safety requirements

<table>
<thead>
<tr>
<th>Regulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof Crush Rollover (FMVSS 216)</td>
</tr>
<tr>
<td>Roof Crush/Rollover (IIHS)</td>
</tr>
<tr>
<td>Electronic Stability Control (ESC)</td>
</tr>
<tr>
<td>Pole Impact</td>
</tr>
<tr>
<td>Front Impact</td>
</tr>
<tr>
<td>Bumper Impact</td>
</tr>
<tr>
<td>Ped-Pro (Pedestrian Protection)</td>
</tr>
</tbody>
</table>

![Safety Impact Diagrams]
Other Advanced Technologies Evaluated

- Low Rolling Resistance Tires
- Lightweight glazing
- LED lighting
- Instrument and panel displays
- Lightweight seating
- ‘By-wire’ technology
Minimum Vision & Obscuration Requirements

- 16° Approach Angle
- 13° Ramp Breakover Angle
- 25° Departure Angle

Minimum Angles & Clearances

- 150 mm Ground Clearance
- 390.0 mm
- 1065.0 mm
- 850.0 mm
- 328.0 mm
- 495.0 mm
- 780.0 mm
- 2524.0 mm

T1: Styling & CFD
T2: Topology & Optimization
T3: Low-Fidelity 3D Design Optimization
T4: Body Structure Sub-System Optimization

Powertrain Layout

Phase 1 - Technology Assessment

FSV BEV Packaging

WorldAutoSteel

www.worldautosteel.org

FutureSteelVehicle
FSV Styling & CFD

Coefficient of Drag (CD) Target: 0.25

First styling theme

CFD – Computational Fluid Dynamic

FutureSteelVehicle
Styling & CFD – Cooling Air Flow Motor Compartment

Front air intake opening optimized for the required cooling flow
Styling & CFD - effect of external features

Drag Coefficient 0.24 with rear wheel skirt

Drag Coefficient 0.27
FSV: BEV Final Styling

Utilities Access and Charging Port
<table>
<thead>
<tr>
<th></th>
<th>BIW Mass (kg)</th>
<th>Powertrain Mass (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSV</td>
<td>190</td>
<td>329</td>
</tr>
<tr>
<td>VW Polo 2010</td>
<td>231</td>
<td>233</td>
</tr>
</tbody>
</table>

FSV BIW mass target
Design Optimization Process Overview

Process Enablers:
- Model Parameterization Tools (SFE-Concept)
- Multi-Disciplinary (MD) Optimization Tools (HEEDS, GENESIS)
- Analysis Tools (NASTRAN, LS-DYNA)
- High Performance Computing

ESL = Equivalent Static Loading
MD = Multidisciplinary
3G = Geometry, Grade and Gage

T1 - ESL
MD Topology Design Optimization

T2 - MD LoadPath Topology and 3G Optimization

T3 - Sub-Systems MD 3G Holistic Optimization

Select Major Members Manufacturing Process
Topology Optimization Load Cases

Phase 1
- Technology Assessment
- Packaging
- Styling & aerodynamic
- Non-Linear Dynamic Topology Optimization (LF3G)
- Sub-System Topography Optimization
- Detail Design
- Design Confirmation
- Gauge Optimization

Phase 2
- Final Design Confirmation
- Report

FutureSteelVehicle

American Iron and Steel Institute
Topology Optimization Results

Phase 2 Report
Final Design Confirmation
Gauge Optimization
Design Confirmation
Detail Design
Sub-System Topography Optimization
Non-Linear Dynamic Topology Optimization (LF3G)
Linear-Static Topology Optimization
Phase 1 Technology Assessment
Packaging
Styling & aerodynamic

T1
T2
T3
T4
T5
T6
Multidisciplinary (MD) Topology Design Optimization

- Topology optimization drives the material of structure to where it is most effective.
- Allow Topology Load Path Optimization to influence locations and shape of components based on Packaging.
- Topology Optimization is interpreted by engineering judgment.
Design Optimization Automated Process

ACP = Accelerated Concept to Product
MD 3G = MultiDisciplinary Geometry, Gage and Grade

Geometry

Monitoring

MD 3G Optimization

Design Solution

ACP Automated Process
Low Fidelity 3G (Geometry, Gauge & Grade) Optimization

Phase 1 - Technology Assessment
Powertrain Layout
Styling & CFD
Topological Optimization
Low-Fidelity 3G Design Optimization

FutureSteelVehicle

www.worldautosteel.org
LF3G Optimization Results
LF3G Optimization Results

Phase 1 - Technology Assessment
Powertrain Layout
Styling & CFD
Topology Optimization
Low-Fidelity 3D Design Optimization

LF3G Optimized Body Structure Geometry
Low Fidelity 3G Optimization – Results Interpretation

LF3G Optimized Body Structure Geometry – interpreted to sheet steel design

'LF3G Optimized Geometry'

'Sheet Steel design'

150
130
LF3G Rocker Section

115 mm
120 mm

1.6 mm
Sub Systems 3G Opt – Selection of Manufacturing Process

Phase 2 Report
Final Design Confirmation
Gauge Optimization
Design Confirmation
Detail Design
Sub-System 3G Optimization
Non-Linear Dynamic Topology Optimization (LF3G)
Linear-Static Topology Optimization
Phase 1 Technology Assessment
Packaging
Styling & aerodynamic
Sub Systems 3G Opt – Selection of Manufacturing Process

WorldAutoSteel
FutureSteelVehicle
American Iron and Steel Institute
Sub System 3G Opt – System selection load path mapping

- Front NCAP
- Front ODB
- Rear ODB
- Side Pole
- Roof
- Bending Torsion

Loadcase: Front NCAP, Front ODB, Rear ODB, Side, Pole, Roof, Bending, Torsion

Sub System 3G Opt – System selection load path mapping

- Phase 1 – Technology Assessment
- Powertrain Layout
- Styling & CFD
- T1
- T2
- T3
- T4

Body Structure Sub-System Optimization

Low-Fidelity 3G Design Optimization

Resultant Force (% total load)

- Sub System 3G Opt – System selection load path mapping

FutureSteelVehicle

www.worldautosteel.org
Body Structure – Sub System 3G Optimization

Variables for optimization:
1. Section Geometry using control points
2. Material Grade
3. Panel Gauge
Body Structure – Sub System 3G Optimization

- Phase 1: Technology Assessment
- Powertrain Layout
- Styling & CFD
- Topology Optimization
- Low-Fidelity 3G Design Optimization

S2S1: T1
S3 S4: T2
S5: T3

- Move together for flat mating condition
- Independent Control Points
- Hold seal flange
- Rocker reinf
- Floor side inr
- Space (common)

FutureSteelVehicle

www.worldautosteel.org
Body Structure Sub System – Rocker Solutions

Section control points – constraining method determines the manufacturing solution.

- Stamping AHSS
- Roll-forming AHSS
- Hydroforming AHSS
- Extrusion Aluminum

FutureSteelVehicle
Body Structure Sub System – Rocker Solutions

Stamping AHSS

Roll-forming AHSS

Hydroforming AHSS

Extrusion Aluminum

FutureSteelVehicle
Body Structure Sub System – Rocker Solutions

<table>
<thead>
<tr>
<th></th>
<th>Conventional Stamping</th>
<th>Hot Stamping</th>
<th>Roll Forming</th>
<th>Hydroforming</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blanks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LWB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WorldAutoSteel | FutureSteelVehicle | American Iron and Steel Institute
Body Structure Sub System - Selection

1. Mass
2. Cost
3. Total Life Cycle Assessment – GHG Emissions; CO\textsubscript{2} Equiv (kg)
 - Vehicle use phase (200,000 km)
 - Material Manufacture
 - Vehicle Manufacture
 - Vehicle recycling

LCA Ref: fka & UCSB
Cost Assessment Model

Process Data
- Blank size, Cycle Time, Press Type & Size, Tooling Cost

Cost Model
- Component Costs
- Material
- Labor
- Equipment
- Building
- Maintenance
- Tooling

Energy, Maintenance Parameter FSV
- Values (sample)
 - Energy consumption rate: 1000 kW/hr
 - Space requirement: 150 sqm/line
 - Manpower: 2 worker/line
 - Line Rate: 240 hits/hr
 - Reject rate: 1.00%
 - Press line die average change time: 30 mts
 - Press line lot size: 1500
 - Maintenance Percentage: 10%

Material Data

Labor Parameters
- Annual Paid Time: 3525 hrs/yr
- Indirect workers (Overhead): 0.25 per direct worker
- Wage (including benefits): $45.00/hr*

Building, Equipment Parameters
- Interest (Equipment, Building etc.): 10%
- Equipment life: 20 yr
- Building life: 25 yr
- Building unit cost: $1,500/sqm

Same approach - MIT advanced Materials Lab used for ULSAB
FSV: Rocker Optimization – Closed Roll-form from TWC

1.2 mm DP700/1000

1.4 mm DP700/1000

Tailor Welded Coil (TWC)

<table>
<thead>
<tr>
<th></th>
<th>Cost</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>$15.66</td>
<td>100%</td>
</tr>
<tr>
<td>Maintenance</td>
<td>$0.09</td>
<td>0.6%</td>
</tr>
<tr>
<td>Building</td>
<td>$0.07</td>
<td>0.4%</td>
</tr>
<tr>
<td>Overhead</td>
<td>$0.44</td>
<td>2.8%</td>
</tr>
<tr>
<td>Energy</td>
<td>$0.42</td>
<td>2.7%</td>
</tr>
<tr>
<td>Labor</td>
<td>$0.76</td>
<td>4.8%</td>
</tr>
<tr>
<td>Equipment</td>
<td>$0.37</td>
<td>2.4%</td>
</tr>
<tr>
<td>Tooling</td>
<td>$0.97</td>
<td>6.2%</td>
</tr>
<tr>
<td>Material</td>
<td>$12.53</td>
<td>80.0%</td>
</tr>
</tbody>
</table>

www.worldautosteel.org

FutureSteelVehicle

American Iron and Steel Institute
Importance of Life Cycle Assessment

Material production greenhouse gas (GHG) emissions:

<table>
<thead>
<tr>
<th>Material</th>
<th>GHG from Production (in kg CO₂eq/kg of material)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel</td>
<td>2.0 – 2.5</td>
</tr>
<tr>
<td>Aluminium</td>
<td>11.2 – 12.6</td>
</tr>
<tr>
<td>Magnesium</td>
<td>18 – 45</td>
</tr>
<tr>
<td>Carbon FRP</td>
<td>21 – 23</td>
</tr>
</tbody>
</table>

Current Average GHG Emissions Primary Production

Footnotes:
- All steel and aluminium grades included in ranges.
- Difference between AHSS and conventional steels less than 5%.
- Aluminium data - global for ingots; European only for process from ingot to final products.
Rocker - Total Life Cycle Assessment – CO2 equiv (kg)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline - Rocker 10.26 kg</td>
<td>15,980</td>
<td>2291</td>
<td>5.7</td>
<td>14,640</td>
<td>-956.8</td>
</tr>
<tr>
<td>Solution 1 - Stamping</td>
<td>+53.2</td>
<td>8.6</td>
<td>0.4</td>
<td>48.0</td>
<td>-3.8</td>
</tr>
<tr>
<td>Solution 2 - Hot Stamp</td>
<td>-37.1</td>
<td>-18.0</td>
<td>3.9</td>
<td>-32.1</td>
<td>9.1</td>
</tr>
<tr>
<td>Solution 3 - Roll Form</td>
<td>-182.6</td>
<td>-44.9</td>
<td>-0.7</td>
<td>-158.6</td>
<td>21.5</td>
</tr>
<tr>
<td>Solution 4 - Hydroform</td>
<td>-248.2</td>
<td>-67.5</td>
<td>10.1</td>
<td>-223.4</td>
<td>32.5</td>
</tr>
</tbody>
</table>
Body Structure Sub System – Front Rails

Stamping 3 piece AHSS

Stamping 2 piece AHSS – LWB

Stamping 2 piece Aluminum

Hydroformed AHSS

T4

Body Structure & System Optimization

T3

Low-Fidelity & Design Optimization

T2

Static & Crash

T1

Powertrain Layout

Plating – Technology

www.worldautosteel.org
Body Structure Sub System – Shotgun

Stamping 2 piece
AHSS – LWB

Stamping 2 piece
Aluminum
Body Structure Sub System – Rear Rail

Stamping
AHSS – LWB

Hydroforming

Stamping Aluminum

FutureSteelVehicle

American Iron and Steel Institute

www.worldautosteel.org
Body Structure Sub System – Roof Side Rail

- Stamping AHSS – LWB
- Hydroforming
- Stamping Aluminum
Body Structure Sub System – Tunnel Support Rails

Stamping
AHSS – LWB

Roll forming
AHSS

Roll forming
Aluminum

www.worldautosteel.org

Future Steel Vehicle

American Iron and Steel Institute
Rocker Cost, Mass & LCA CO₂ eq Assessment

<table>
<thead>
<tr>
<th>HF3G Technology Assessment</th>
<th>HF3G Manufacturing Interpretation</th>
<th>High Volume Manufacturing Feasibility</th>
<th>Sub-System Mass (kg)</th>
<th>Manufacturing Cost ($)</th>
<th>LCA CO₂ Savings (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>B ST</td>
<td>Conservative</td>
<td>10.26</td>
<td>19.99</td>
<td>0</td>
</tr>
<tr>
<td>Stamping Solution (HEEDS Mass)</td>
<td>ST</td>
<td>Conservative</td>
<td>10.95</td>
<td>21.33</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>ST TRB</td>
<td>Mid-Term</td>
<td>10.52</td>
<td>24.18</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>ST LWB</td>
<td>Conservative</td>
<td>10.47</td>
<td>27.86</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>HST</td>
<td>Conservative</td>
<td>9.80</td>
<td>24.98</td>
<td>-37</td>
</tr>
<tr>
<td></td>
<td>HST TRB</td>
<td>Mid-Term</td>
<td>9.66</td>
<td>27.68</td>
<td>-47</td>
</tr>
<tr>
<td></td>
<td>HST LWB</td>
<td>Mid-Term</td>
<td>9.66</td>
<td>31.60</td>
<td>-37</td>
</tr>
<tr>
<td>Roll Form (HEEDS Mass)</td>
<td>RF</td>
<td>Conservative</td>
<td>7.98</td>
<td>14.18</td>
<td>-183</td>
</tr>
<tr>
<td></td>
<td>RF TRB</td>
<td>Aggressive</td>
<td>7.95</td>
<td>16.47</td>
<td>-189</td>
</tr>
<tr>
<td></td>
<td>RF TWC</td>
<td>Conservative</td>
<td>8.07</td>
<td>15.66</td>
<td>-177</td>
</tr>
<tr>
<td>Hydroform (HEEDS Mass)</td>
<td>HF</td>
<td>Conservative</td>
<td>7.05</td>
<td>22.80</td>
<td>-248</td>
</tr>
<tr>
<td></td>
<td>HF LWT</td>
<td>Mid-Term</td>
<td>6.96</td>
<td>27.89</td>
<td>-245</td>
</tr>
<tr>
<td></td>
<td>HF MWT</td>
<td>Aggressive</td>
<td>6.96</td>
<td>23.91</td>
<td>-255</td>
</tr>
<tr>
<td>Aluminum</td>
<td>AL</td>
<td>Mid-Term</td>
<td>7.53</td>
<td>39.70</td>
<td>-204</td>
</tr>
</tbody>
</table>
Rocker Technology Options
(Mass vs Cost Value)

Parallels of Constant Value ($9.39/kg)

Increasing Value

FSV – Mass Paradigm Shift
FSV – Rocker Cost, Mass & LCA CO2 eq Assessment

Rocker Technology Options
(Mass vs Cost Value)
Parallels of Constant Value ($9.39/kg)

Rocker Technology Options
(LCA CO2 reduction, Cost & Value)
Parallels of Constant Value
($100/tonne)
FSV – Shot gun, Mass & LCA CO$_2$ eq Assessment

Shotgun Technology Options
(Mass vs Cost Value)

Parallels of Constant Value ($9.39/kg)

- AL
- ST TRB
- HST TRB
- HST LWB
- ST LWB
- B ST

Shotgun Technology Options
(LCA CO$_2$ reduction, Cost & Value)

Parallels of Constant Value ($100/tonne)

- AL
- ST TRB
- HST TRB
- HST LWB
- ST LWB
- B ST

Future Steel Vehicle

WorldAutoSteel.org
Conclusion

FutureSteelVehicle

Gauge Optimization
Design Confirmation
Detail Design
Sub-System Topography Optimization
Non-Linear Dynamic Topology Optimization (LF3G)
Linear-Static Topology Optimization
Packaging
Styling & Aerodynamic
Phase 2 Report
Phase 1 Technology Assessment
Final Design Confirmation
Thank you for your attention