Great Designs in Steel is Sponsored by:

ArcelorMittal Dofasco, ArcelorMittal USA, Nucor Corporation, Severstal North America, Inc. and United States Steel Corporation
Future Generation Passenger Compartment - Validation

Joseph Polewarczyk
General Motors Corporation
Auto/Steel Partnership Members

www.autosteel.org
PROJECT TEAM MEMBERS

Co-Chairs: Jody Shaw (U. S. Steel) & Joe Polewarczyk (GM)

Chrysler Corporation
Dave Reed

Ford Motor Company
Shyamal Das
Kirti Patel

General Motors Corporation
John Catteral
Chips Leung

ArcelorMittalDofasco
Tom Wormald

AK Steel
Tim Montroy

Nucor Steel
Weiping Sun

Severstal North America Inc.
Yu-Wei Wang

ArcelorMittal
Liang Huang
Min Kuo

U. S. Steel Corporation
Guofei Chen
Ming Chen

Supplier
Paul Dolan (ETA)
Akbar Farahani (ETA)

Staff Members:
Pat Villano (A/SP)
Chuck Potter (AISI)
Roger Heimbuch (A/SP)
Mike Bzdok (A/SP)
• Project Description
 • Problem & Benefits
 • Scope
 • Process
• Project Results
 • Design changes
 • Performance results vs. baseline
 • Mass reduction
Vehicle mass reduction is increasingly important for future vehicle designs, however body structure mass has been increasing due to increases in performance requirements.
• Primary focus is mass reduction
• Match baseline performance in all other criteria
 — Dynamic and Static Stiffness
 — Crash Test Performance
 — Durability
PROJECT DESCRIPTION

• Optimize:
 — Geometry: optimize load path and shape
 — Grade: optimize with higher grades where needed
 — Gauge: down-gauge where possible

• Analyze:
 — CAE: Use modeling to predict level of performance and compare to criteria

• Validate:
 — Analysis as confirmation
PROJECT DELIVERABLES

• Mass Reduction: Target 30% of passenger compartment
• Static & Dynamic Stiffness: Meet or slightly exceed baseline
• Side Impact Performance: Maintain crash rating of baseline (structural criteria only)
• Roof Strength: Meet baseline target
• Offset Deformable Barrier
• Other Crash Tests: Confirmation checks on other crash test performance levels such as NCAP, Rear Impact, Seat Belt Pull to ensure no degradation.
FGPC Baseline Structure
- Passenger Compartment shaded in red
- Remaining structure in gray
Simultaneous optimization of Geometry, Grade and Gauge to reduce mass

- Applied optimization techniques to determine optimal locations for structural load paths and section shapes (geometry optimization)

- Choice of material grade and gauge optimized for the new geometry

- Additionally, considered effect of continuous joining
PROJECT RESULTS

• Design changes
 • Added Two Load paths
 • Many grade increases
 • Many gauge decreases
• Performance results vs. baseline
 • Structural criteria met
 • Variation with seat location
 • Further improvement with continuous joining
• Mass reduction between 15-20%
Load Path Optimization resulted in addition of two new load paths

- Cross car lower load path at base of B-pillar
- Roof Bow slightly rearward of upper B-pillar
B-PILLAR LOAD PATH DETAILS

Interface between Seat and Center Console

Interface between Seat and B-Pillar
New or no change
Higher grade over baseline
Lower grade over baseline
PERFORMANCE SUMMARY

New Design Met the following load cases:

<table>
<thead>
<tr>
<th>LOADCASE</th>
<th>TARGET</th>
<th>FINAL DESIGN</th>
<th>MET TARGET?</th>
</tr>
</thead>
<tbody>
<tr>
<td>IIHS Side Impact</td>
<td>Survival Space</td>
<td>83mm</td>
<td>109mm</td>
</tr>
<tr>
<td>FMVSS 216 Roof Crush</td>
<td>Crush Force</td>
<td>2.75 x Curb Weight (48.5kN)</td>
<td>2.76 x Curb Weight (48.7kN)</td>
</tr>
<tr>
<td>FMVSS 214 Door Intrusion</td>
<td>Front Door 6”</td>
<td>2250lbf</td>
<td>3529lbf</td>
</tr>
<tr>
<td></td>
<td>12”</td>
<td>3500lbf</td>
<td>6558lbf</td>
</tr>
<tr>
<td></td>
<td>Rear Door 6”</td>
<td>2250lbf</td>
<td>4435lbf</td>
</tr>
<tr>
<td></td>
<td>12”</td>
<td>3500lbf</td>
<td>7992lbf</td>
</tr>
<tr>
<td>IIHS Front Crash 40% ODB</td>
<td>Footwell</td>
<td>150mm</td>
<td>54mm</td>
</tr>
<tr>
<td></td>
<td>Left Toe Pan</td>
<td>150mm</td>
<td>73.8mm</td>
</tr>
<tr>
<td></td>
<td>Center Toe Pan</td>
<td>150mm</td>
<td>99.4mm</td>
</tr>
<tr>
<td></td>
<td>Right Toe Pan</td>
<td>150mm</td>
<td>70.7mm</td>
</tr>
<tr>
<td></td>
<td>Brake Pedal</td>
<td>50mm</td>
<td>111.3mm</td>
</tr>
<tr>
<td></td>
<td>Left IP</td>
<td>50mm</td>
<td>39.5mm</td>
</tr>
<tr>
<td></td>
<td>Right IP</td>
<td>50mm</td>
<td>30.6mm</td>
</tr>
<tr>
<td>NPRM FMVSS 214 Pole Impact</td>
<td>Survival Space</td>
<td>83mm</td>
<td>99.7mm</td>
</tr>
<tr>
<td>Modal & Static Stiffness</td>
<td>Static Torsion</td>
<td>23.594 Nm/deg</td>
<td>24.309 Nm/deg</td>
</tr>
<tr>
<td></td>
<td>Static Bending</td>
<td>9.078 N/mm</td>
<td>9.080 N/mm</td>
</tr>
<tr>
<td></td>
<td>Torsional Mode</td>
<td>45.8 Hz</td>
<td>55 Hz</td>
</tr>
<tr>
<td></td>
<td>Bending Mode</td>
<td>46.5 Hz</td>
<td>46 Hz</td>
</tr>
<tr>
<td>NCAP Front Crash</td>
<td>Time to Zero Velocity</td>
<td>72msec</td>
<td>71msec</td>
</tr>
<tr>
<td></td>
<td>Max Crush Dist</td>
<td>680mm</td>
<td>673mm</td>
</tr>
<tr>
<td>FMVSS 301 Rear Crash</td>
<td>Maintain performance of Donor Vehicle</td>
<td>Achieved</td>
<td>YES</td>
</tr>
<tr>
<td>FMVSS 207/210 Seatbelt Pull</td>
<td>Maintain performance of Donor Vehicle</td>
<td>Achieved</td>
<td>YES</td>
</tr>
<tr>
<td>Durability</td>
<td>Maintain performance of Donor Vehicle</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>Formability</td>
<td>Modified parts to pass one-step formability</td>
<td>Achieved</td>
<td>YES</td>
</tr>
</tbody>
</table>

www.autosteel.org

Auto/Steel Partnership
SEAT POSITION SENSITIVITY

New design exceeded target of 83mm for IIHS Side Impact

Table: IIHS Side Impact Results

<table>
<thead>
<tr>
<th>Driver’s Seat Position</th>
<th>Load case</th>
<th>Passenger’s Seat Position</th>
<th>IIHS Side Impact Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward/High</td>
<td>1</td>
<td>Forward/High</td>
<td>116 mm</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Rearward/Low</td>
<td>101 mm</td>
</tr>
<tr>
<td>Rearward/Low</td>
<td>3</td>
<td>Forward/High</td>
<td>98 mm</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Rearward/Low</td>
<td>99 mm</td>
</tr>
<tr>
<td>Opt Position (5<sup>th</sup> Percentile)</td>
<td>Opt Position (5<sup>th</sup> Percentile)</td>
<td>115mm</td>
<td></td>
</tr>
</tbody>
</table>
Added adhesive in all joints to assess maximum potential

Total Adhesive Mass ~ 1.1kg
CONTINUOUS JOINING RESULTS

Assessed performance improvements for adhesive (Spot-weld w/ bond) and laser welding
• Adhesive yielded the highest gains
• Performed gauge optimization to assess potential mass savings with comparable performance

<table>
<thead>
<tr>
<th></th>
<th>PERFORMANCE IMPROVEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SPOT-WELD→LASER</td>
</tr>
<tr>
<td>IIHS Side Impact</td>
<td>2%</td>
</tr>
<tr>
<td>IIHS Front Impact ODB</td>
<td>16% to 44%</td>
</tr>
<tr>
<td>Roof Crush</td>
<td>15%</td>
</tr>
<tr>
<td>Bending</td>
<td>13%</td>
</tr>
<tr>
<td>Torsion</td>
<td>14%</td>
</tr>
</tbody>
</table>
Load path combined with grade and gauge optimization yielded mass savings of 15%.

Seat load path sensitivity to seat location appears manageable.

Extensive application of adhesive shows promise, but further study required to determine optimal adhesive patterns / business trade offs required.

Expansion of analysis beyond passenger compartment may yield further mass savings.
Questions?
Great Designs in Steel is Sponsored by:

ArcelorMittal Dofasco, ArcelorMittal USA, Nucor Corporation, Severstal North America, Inc. and United States Steel Corporation