Hybrid Advanced High-Strength Steel Design Options for Meeting Enhanced Roof Crush Requirements

Mansour Mirdamadi Blake Zuidema
Mustafa Ahmed Liang Huang
Alan Robinson Min Kuo

Dow Automotive Mittal Steel USA

www.autosteel.org
Microstructure of dual phase steel

- AHSS are composed of ferrite and other non-equilibrium transformation phases such as bainite, martensite, or retained austenite
- Exhibit low yield-to-tensile ratio, high initial work hardening
- Has excellent balance of strength and formability

AHSS includes

- Dual Phase (DP)
- Transformation-Induced Plasticity (TRIP)
- Complex Phase (CP)
- Martensite
BETAFOAM™ Product Overview

- BETAFOAM is a family of PU foam-based products
 - Two-component iso/polyol system
 - Components react when mixed to form closed cell foam at **room temperature**
- Product portfolio includes
 - Bulk foam products
 - Classical MDI foam formulations
 - Low MDI foam formulations
 - Molded products
 - Structural Foam Insert (SFI)
- Application Fit
 - BIW Engineering – bulk and parts
 - OEM In-plant implementation – post-paint or G/A
 - Pre-OEM plant implementation – Tiers (POA)
 - Chassis Engineering - bulk
 - Engine cradles and suspension cross members - Tiers (POA)
BETAFOAM Benefits

- **Potential Application**
 - Performance improvements required but locked or carry-over structural content
 - Performance efficiency required with new structural content or vehicle architecture
 - Enhance / maintain performance w/o growing sections or changing styling theme

Added mass

<table>
<thead>
<tr>
<th>Added mass</th>
<th>0.38 kg</th>
<th>0.77 kg</th>
<th>1.15 kg</th>
<th>0.31 kg</th>
</tr>
</thead>
</table>

Outer Tube:
- \(d = 50 \text{ mm} \), \(t = 0.9 \text{ mm} \)
- Finish: E-coated and painted
- Tube mass: 571 g
- Foam mass: **352 g**
Project Objectives

- **Objectives**
 - To develop an innovative design solution that allows integration of AHSS and BETAFOAM (cavity reinforcement) and BETAMATE (structural bonding) while providing
 - Enhanced roof crush resistance
 - Lightest mass as compared to conventional design approach
 - Optimized for reducing total system cost

- **Hypothesis**
 - AHSS and structural foam offers lighter solutions than what could be achieved by either material individually
Evaluations of BETAFOAM and AHSS

• Objectives
 ➢ To perform quasi-static studies of hollow tube subjected to four-point bending
 ➢ To perform sensitivity studies based on thickness of metal
 ➢ To establish differences in load-deflection response, energy absorption, and mass efficiency (peak load per mass)

• Problem definition
 ➢ 70 mm diameter HSLA steel tube
 ➢ Simply supported at the ends
 ➢ Baseline thickness 2.5 mm (mass: 1.97 kg)
 ➢ Total length: 458 mm
 ➢ Subjected to quasi-static loading

• BETAFOAM evaluation studies
 ➢ BETAFOAM 87100/87124 24 pcf PU foam system
 ➢ Mass: 0.67 kg

• Steel thickness studied
 ➢ 2.5 mm, 2.25 mm, 2.0 mm, 1.75 mm, and 1.5 mm

• Steel grades
 ➢ HSLA 350 and DP780
Enhanced Load Carrying Capability

Assumptions: No steel failure is allowed
Performance, Mass, and Cost Assessment

Cost: material only
Tube length: 16 ft

Normalized Performance, Mass, & Costs

- Force
- Material Costs
- Total Mass
Technical Approach

Evaluate BIW structural response

Sensitivity Studies

Thickness & reinforcements
Steel grades
BETAFOAM treatment
Structural bonding

Evaluate mass and performance efficiency

Develop and evaluate hybrid solution

Achieved targets?

Yes

Seek buy-in

No

Implement

Additional options to be considered
Baseline Performance Assessment

Buckling zones
AHSS Substitution Design

- AHSS substituted into baseline geometry with no up gauge:
 - Peak load 70% of target

- AHSS substituted into baseline geometry, upgauged to achieve close to roof crush requirements
 - Mass penalty 42 lbs

Innovative design is necessary to further improve the performance and mass efficiency of structure
Structural Foam Sensitivity Studies

<table>
<thead>
<tr>
<th>Iterations</th>
<th>Added Mass (kg)</th>
<th>BIW Energy</th>
<th>Force</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iter 1</td>
<td>0.8</td>
<td>5%</td>
<td>6%</td>
</tr>
<tr>
<td>Iter 2</td>
<td>1.6</td>
<td>11%</td>
<td>10%</td>
</tr>
<tr>
<td>Iter 3</td>
<td>3.1</td>
<td>19%</td>
<td>18%</td>
</tr>
<tr>
<td>Iter 4</td>
<td>4.7</td>
<td>29%</td>
<td>30%</td>
</tr>
<tr>
<td>Iter 5</td>
<td>5.5</td>
<td>28%</td>
<td>38%</td>
</tr>
<tr>
<td>Iter 6</td>
<td>8.9</td>
<td>48%</td>
<td>52%</td>
</tr>
<tr>
<td>Iter 7</td>
<td>6.0</td>
<td>28%</td>
<td>42%</td>
</tr>
</tbody>
</table>

- Structural foam mass is not optimized
- Critical locations
 - A-pillar
 - A-pillar to roof header
 - Mid section of C-pillar
 - C-pillar to roof header
 - Rear header
- New iterations include the content of the previous iteration content
- Innovative design is necessary to further improve the performance and mass efficiency of structure

www.autosteel.org
Hybrid Design Content

- Redesign the critical components with TWB and roll forming
 - Add A-Pillar reinforcement
 - Roll forming roof rail tube
 - Roll forming roof bow & rear header
 - Redesign cowl side inner

- Apply BETAFOAM in critical locations in AHSS design
 - C-Pillar Upper Area
 - C-Pillar Middle Area
Structural BETAFOAM
Combined Benefits

- Enabler to AHSS in locally reinforcing BIW structure without the need of additional metal reinforcements or material thickness increases

<table>
<thead>
<tr>
<th></th>
<th>Steel Only</th>
<th>AHSS & C-Upper & C-Mid</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Bending</td>
<td>34.27</td>
<td>35.32 (+1.05 Hz)</td>
</tr>
<tr>
<td>2nd Bending</td>
<td>37.39</td>
<td>39.05 (+1.66 Hz)</td>
</tr>
<tr>
<td>Match Boxing</td>
<td>40.02</td>
<td>42.24 (+2.22 Hz)</td>
</tr>
</tbody>
</table>

- Acoustic sealing of BIW cavities and improving system level NVH
- Improves BIW, and TBIW static and dynamic stiffness resulting in better ride and handling, and a reduction of acoustic treatment
Comparison of Energy Absorption Characteristics Compared to Baseline

Energy Absorption Significantly Improved

- Baseline
- AHSS without BETAFOAM
- AHSS with BETAFOAM

Comparison of Energy Absorption Characteristics Compared to Baseline

- BIW
- FRONT DOOR
- REAR DOOR
Performance Assessment Summary

- AHSS and structural BETAFOAM offers lighter solutions than what could be achieved by either material alone.
- AHSS w/ BETAFOAM (optimized) provides a 10% cost savings over conventional solution.
- Mass penalty associated with optimized AHSS BETAFOAM solutions +5.3 lbs as compared to +42 lbs using conventional approaches.
- BIW first bending frequency improvement: +1.0 Hz.
- BIW match boxing frequency improvement: +2.0 Hz.
Lessons Learned

• Innovative synergistic design approach recognizing the benefits of AHSS and structural BETAFOAM product attributes are key for achieving performance while minimizing cost & weight

• Hybrid design elements
 ➢ AHSS
 - Roll formed component
 - LWB potential option for optimization
 ➢ Structural BETAFOAM treatment
 - C-Pillar Upper Area
 - C-Pillar Middle Area
 - A-Pillar (optional)

• BETAFOAM provides flexibility in
 ➢ Reduction of sheet metal thickness
 ➢ Elimination of metal reinforcements
 ➢ Locally reinforces sheet metal while providing stiffness continuity across body joints and pillars
 ➢ Fine tuning required chemistry to provide balance between mass, cost, and performance
 ➢ Sealing BIW hollow cavities while providing NVH benefits