Durability Comparison and Optimization of Forged Steel and Ductile Cast Iron Crankshafts

Jonathan Williams and Farzin Montazersadgh
Graduate Assistants
and
Ali Fatemi, Professor
The University of Toledo

March 7, 2007
Outline

- Overview and Overall Goal

- Forged Steel & Cast Iron Crankshafts and Comparisons
 - Experimental Work
 - Specimen tests
 - Component tests
 - Analytical Work
 - Life predictions
 - Dynamic load analysis and FEA
 - Optimization
 - Conclusions
Overview and Overall Goal

- Evaluate and compare fatigue performance of forged steel components with competing manufacturing process technologies.
 - Steering Knuckle
 * Forged steel * Cast aluminum * Cast iron
 - Connecting Rod
 * Forged steel * Powder metal
 - Crankshaft
 * Forged steel * Ductile cast iron

- Evaluate life prediction techniques as compared with experimental results and perform optimization.
Overview and Overall Goal

Steering Knuckle
- Forged Steel: 2.5 kg, 11V37 Steel
- Cast Aluminum: 2.4 kg, A356-T6
- Cast Iron: 4.7 kg, 65-45-12

Connecting Rod
- Forged steel: 0.93 lb
- Powder metal: 1.2 lb

Crankshaft
- Forged steel: 3.9 kg
- Ductile cast iron: 3.7 kg
Publications of Results
(Steering Knuckle and Connecting Rod)

Steering Knuckle

Connecting Rod

Crankshaft Study
Overall Objectives

• Evaluate and compare fatigue performance of forged steel and ductile cast iron crankshafts.

• Perform life predictions and compare with component test data.

• Perform dynamic load analysis and optimization.
Outline

• **Literature Survey on Crankshafts**
 – Design and manufacturing considerations including cost analysis
 – Comparison of Competing manufacturing techniques
 – Durability assessment and optimization
 – Experimental techniques and bench testing

• **Experimental Work**
 – Specimen Testing (Forged steel and ductile cast iron)
 – Component Testing (Forged steel and ductile cast iron)

• **Analytical Evaluations**
 – Dynamic Load Analysis
 – Stress Analysis Using FEA
 – Durability Analysis and Life Predictions
 – Optimization
Crankshaft Publication of Results

Crankshaft Nomenclature

Loading: Bending and Torsion

Crankshafts

Forged Steel Crankshaft
- Outdoor power equipment engine
- 460 cc, 12.5 HP
- 3.9 kg

Ductile Cast Iron Crankshaft
- Similar engine type and size
- 3.7 kg
Specimen Testing

- **Specimen Tests**
 - Strain-controlled tensile tests
 - Strain-controlled fatigue tests
 - Procedures and practices as outlined by ASTM
 - Round specimens machined from unmachined crankshafts

Closed-loop servo-hydraulic axial load frame
Specimen Geometry
Material Stress-Strain Curves

- Forged Steel Monotonic
- Forged Steel Cyclic
- Cast Iron Cyclic
- Cast Iron Monotonic
Forged steel has better S-N fatigue performance than the ductile cast iron.

At long lives, for a given stress, forged steel has a factor of 30 longer life.
Material Comparison

- Fatigue life is often controlled by stress and strain ranges at root of the fillet.
- At long lives, the forged steel has a factor of 50 longer life.
Charpy V-Notch Results

Specimen Orientation

Results

Absorbed Energy (J)

Test Temperature (°C)

Forged steel L-T
Forged steel T-L
Cast Iron

www.autosteel.org
Mechanical Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Forged Steel</th>
<th>Cast Iron</th>
<th>Ratio*</th>
</tr>
</thead>
<tbody>
<tr>
<td>YS (MPa)</td>
<td>625</td>
<td>412</td>
<td>0.66</td>
</tr>
<tr>
<td>UTS (MPa)</td>
<td>827</td>
<td>658</td>
<td>0.80</td>
</tr>
<tr>
<td>%RA</td>
<td>58</td>
<td>6</td>
<td>0.10</td>
</tr>
<tr>
<td>CVN (Room Temp) (J)</td>
<td>58</td>
<td>5</td>
<td>0.08</td>
</tr>
<tr>
<td>S_f (at $N_f=10^6$) (MPa)</td>
<td>359</td>
<td>263</td>
<td>0.73</td>
</tr>
</tbody>
</table>

* base of comparison is the forged steel
Component Fatigue Tests

Schematic of test set-up

- Load-controlled, constant amplitude fatigue tests
- R-Ratio: -0.2
- Test frequency: 1.4 – 3 Hz
- Life range: $7 \times 10^3 – 4 \times 10^6$
- Both crankshafts tested at the same load (moment) amplitudes
Component Fatigue Test Results

- Lives based on crack initiation (small crack on the order of a few mm).
- For a given bending moment, forged steel crankshaft has a factor of 6 longer life.
Component Fatigue Test Results Based on 5% Change

- Lives based on 5% change in displacement amplitude (large crack).
- For a given bending moment, the forged steel crankshaft has an order of magnitude longer life.
Fractured Components

www.autosteel.org
\[
\frac{S_a}{S_{Nf}} + \frac{S_m}{S_u} = 1 \\
S_{Nf} = \sigma_f^' \left(2N_f\right)^b
\]
Dynamic Load Analysis

Pressure vs. Crankshaft Angle

Slider-Crank Mechanism (ADAMS Simulation)

Resultant
Bending
Torsional

Critical Speed

Max Bending
Max Torsion
Range of Bending
Range of Torsion

www.autosteel.org
Digitized Models

Forged Steel

Cast Iron

www.autosteel.org
Boundary Conditions for FEA

Service Life
(1 of 4 steps)

Fixed surface in all degrees of freedom over 180°

Fixed edge in directions 1 & 2 over 180°

Applied load; constant pressure over 120°
Mesh Generation

Forged Steel

Cast Iron
FEA and Critical Location

Stress Magnitude (MPa)

Crankshaft Angle (Deg)

Critical Location

Location Number

Critical Location

www.autosteel.org
Comparison Between FEA and Experimental

<table>
<thead>
<tr>
<th>Load (N)</th>
<th>Location a</th>
<th>Location b</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FEA (MPa)</td>
<td>EXP (MPa)</td>
</tr>
<tr>
<td>-890</td>
<td>-61.6</td>
<td>-59.3</td>
</tr>
<tr>
<td>890</td>
<td>61.5</td>
<td>65.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Load (N)</th>
<th>Location c</th>
<th>Location d</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FEA (MPa)</td>
<td>EXP (MPa)</td>
</tr>
<tr>
<td>-890</td>
<td>-76.4</td>
<td>-71.7</td>
</tr>
<tr>
<td>890</td>
<td>76.3</td>
<td>75.8</td>
</tr>
</tbody>
</table>
Optimization Flowchart

- Objective Function
 - Weight Reduction
 - Improve Performance
 - Reduce Cost

- Design Variables
 - Material Properties
 - Geometry Variables
 - Manufacturing Process

- Constraints
 - Material Limits and Cost
 - Geometry Restrictions
 - Manufacturing Feasibility and cost

- Initial Design Model (Geometry, Material, Process)

- Optimization
 - Geometry Optimization
 - Alternative Materials

- Redesigned Model
 - Redesign

- Original Model

- Replaceable with the original crankshaft
- 18% weight reduction
- Reduced finished cost
- Significantly higher fatigue strength
Geometry Optimization Process

Final Optimized Geometry
Material and Manufacturing Optimization

- Manufacturing
 - Adding fillet rolling
- Material
 - Using Micro-Alloyed Steel

Specimen Rig Test (Park et al. 2001)
Conclusions

• Yield strength of the forged steel is 50% higher than that of the cast iron, while the ultimate strength is 26% higher. Ductility and impact toughness of the forged steel is also significantly higher.

• Material fatigue strength at 10^6 cycles for the forged steel is 37% higher than that of the cast iron, resulting in 30 times longer life.

• Component fatigue tests show fatigue strength based on crack initiation for the forged steel crankshaft to be 27% higher than that of the cast iron. This results in a factor of 6 longer life.

• Fatigue crack growth was a significant portion of the life for both crankshafts. The crack growth rate for the forged steel was slower than that of the cast iron.
Conclusions

- Life predictions using the S-N approach provided very reasonable estimations for the forged steel crankshafts. Predictions for the cast iron crankshafts were less accurate but were conservative.

- Dynamic load analysis results in more realistic stresses, whereas static analysis overestimates the results.

- Considering the torsional load in the overall dynamics analysis has no effect on von Mises stress at the critically stressed location.

- Geometry optimization resulted in 18% weight reduction of the forged steel crankshaft. Fillet rolling results in significant increase of the crankshaft fatigue strength.