Great Automotive Designs Enabled By Advances in Adhesive Bonding

Mansour Mirdamadi and Greg Korchnak

Dow Automotive
• Classification of adhesive systems for body structure applications
• Industry trends
• OEM acceptance of adhesive bonding technology
• Benefits of structural bonding
• Case studies
Choice of Structural Adhesive

• Automotive industry criterion for structural adhesives
 ➢ Modulus: Above 1000 MPa
 ➢ Glass Transition Temperature: Above 80 °C
 ➢ Impact Resistance f(T): From -40 °C to 80 °C
 ➢ Oil Compatibility: Adhesion to oily substrates
 ➢ Wash-off resistance

• Epoxy based systems
 ➢ General purpose
 ➢ Standard grades
 ➢ Semi-fracture toughened
 ➢ Superior fracture toughened

One component toughened epoxy is the industry choice
Characterization of Adhesive Toughness

- **Wedge impact peel (ISO 11343)**
 - The wedge is driven between two bonded metal halves by the energy of a falling mass achieving impact speeds of 2 m/sec to 3 m/sec

- **Usable outputs**
 - Adhesive resistance to crack growth
 - Compatibility of the adhesives with substrate types and coatings
 - Influence of temperature -40 °C to 80 °C

![Wedge impact peel diagram](image-url)

Typical load vs. time profile

- **Stable crack growth**
 - Load sustained
- **Unstable crack growth**
 - Unable to carry load
Impact Peel Test Results

- Increased ductility at low temperatures

- Increased crash resistance
- Increased durability
- Increased flexibility to down gauge metal & reduce welds

<table>
<thead>
<tr>
<th>Strength (N/mm)</th>
<th>General Purpose Adhesive</th>
<th>Structural Adhesive</th>
<th>Semi Fracture Toughened</th>
<th>Fully Fracture Toughened</th>
</tr>
</thead>
<tbody>
<tr>
<td>-40C</td>
<td>0</td>
<td>0</td>
<td>22</td>
<td>44</td>
</tr>
<tr>
<td>-20C</td>
<td>12</td>
<td>12</td>
<td>19</td>
<td>21</td>
</tr>
<tr>
<td>RT</td>
<td>7.5</td>
<td>6</td>
<td>12</td>
<td>35</td>
</tr>
</tbody>
</table>

www.autosteel.org
Wedge-Impact Peel Performance for Various Steel Types

Galvaneal Coating Evaluation

- Adhesive systems optimized for compatibility to galvaneal coatings

Steel Type Evaluation

- Adhesive systems optimized for full compatibility to new AHSS steels

Adhesive systems optimized for compatibility to galvaneal coatings

Adhesive systems optimized for full compatibility to new AHSS steels
Trends and Needs for Innovation

- **External drivers**
 - Safety requirement and continuous demands to increase vehicle safety and crashworthiness
 - Frontal offset impact
 - IIHS side impact
 - Roof crush, rollover protection
 - Upgraded fuel integrity requirements
 - CAFE requirements (mass reductions)
 - Customer comfort
 - Consumer demand for frequent styling changes

- **OEM**
 - Cost reduction
 - Common architecture body structure design
 - Carry over components, assemblies, and sub-assemblies
 - Design theme variations
 - Coupe, sedan, convertible
 - Engine, and powertrain combinations
 - Import vehicles designed and manufactured from AP, and LA into US
 - Aggressive styling, while improving occupant compartment space
 - Plant utilization and capacity
Structural Bonding Usage Trends for Fracture Toughened Adhesives

A:
- Mercedes Benz S-Class

B:
- Range Rover
- VW Polo
- VW Touran
- Mercedes Benz E-Class
- Mercedes Benz S-Class
- Jaquar XJ
- BMW 7-Series

C:
- BMW 1-Series
- Skoda Octavia
- Audi A6

D:
- Audi Q7
- Mercedes Benz S-Class
Fracture Toughened Adhesives Contributes to Weld Reduction, Stiffness Improvement, and Weight Reduction

- Stiffness and weight comparison relative to baseline
 - 1st bending: 34% increase
 - Torsion: +20% increase
 - Mass: -7 kg reduction

<table>
<thead>
<tr>
<th></th>
<th>05’ AUDI A6</th>
<th>Previous AUDI A6</th>
<th>Delta</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of parts</td>
<td>345</td>
<td>287</td>
<td>+ 58</td>
</tr>
<tr>
<td>Spot welds</td>
<td>5102</td>
<td>6147</td>
<td>- 1045</td>
</tr>
<tr>
<td>Rivets</td>
<td>364</td>
<td>0</td>
<td>+ 364</td>
</tr>
<tr>
<td>Clinching</td>
<td>83</td>
<td>63</td>
<td>+ 20</td>
</tr>
<tr>
<td>Laser welds</td>
<td>4.5 m</td>
<td>3.5 m</td>
<td>+ 1 m</td>
</tr>
<tr>
<td>Laser solder</td>
<td>4.2 m</td>
<td>0</td>
<td>+ 4.2 m</td>
</tr>
<tr>
<td>MIG welds</td>
<td>5.9 m</td>
<td>2.5 m</td>
<td>+ 3.4 m</td>
</tr>
<tr>
<td>Weld pins</td>
<td>408</td>
<td>220</td>
<td>+ 188</td>
</tr>
<tr>
<td>Structural adhesives</td>
<td>122 m</td>
<td>36 m</td>
<td>+ 86 m</td>
</tr>
<tr>
<td>Inserts</td>
<td>22</td>
<td>5</td>
<td>+ 17</td>
</tr>
<tr>
<td>BIW robots</td>
<td>603</td>
<td>480</td>
<td>+ 123</td>
</tr>
</tbody>
</table>

Reference: EURO CAR BODY 2004
Structural Bonding Usage Trends

<table>
<thead>
<tr>
<th>High</th>
<th>Replication mode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Down gauging of sheet metal components</td>
</tr>
<tr>
<td></td>
<td>Reducing no. of spot welds</td>
</tr>
<tr>
<td></td>
<td>Investigating innovative ways to reduce total system cost</td>
</tr>
<tr>
<td></td>
<td>Optimizing joint designs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Realized full benefits of structural bonding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rely on other joining techniques in addition to adhesive bonding</td>
</tr>
<tr>
<td>Early adopters of technology, move cautiously</td>
</tr>
<tr>
<td>Have not established implementation strategies</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Low</th>
<th>Use adhesives to enhance corrosion resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Use adhesives in areas where welding or other joining options are limited</td>
</tr>
<tr>
<td></td>
<td>Structural adhesives not aligned with long-term strategies</td>
</tr>
</tbody>
</table>

| Primary use adhesives for stiffness and durability improvements |
| Have not recognized the benefits of fully fracture toughened adhesives |

<table>
<thead>
<tr>
<th>Technology Acceptance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
</tr>
<tr>
<td>High</td>
</tr>
</tbody>
</table>
Why Structural Adhesives?

- Eliminates sudden change of stresses
- Significantly lowers stress acting across joined region
- Uniformly distributes the load
- Eliminates stress concentration

Why Structural Adhesives?

- Reduction of stress concentration, improves fatigue life significantly
- Higher loads can be sustained
- Enables down gauging of steel

Axial Crush Testing

Fracture toughened adhesives perform better than standard grades

- Improved stability to progressive crush
- Improved load-carrying capability

- Testing parameters
 - Drop tower weight - 33.3 kg
 - Material - 350 MPa yield steel
 - Thickness - 0.62 mm
 - Adhesive thickness - 0.25 mm
 - Test temperature - 14 °C

- Parameters studied
 - Weld spacing - 50 mm and 200 mm
 - Impact speed - 27.6 km/h to 42.2 km/h
Weight Optimization using Structural Adhesives

Objective

Assess the use of structural adhesives to improve NVH body structural response to:
- Improve global NVH body response
- Downgauge sheet metal panels
- Minimize use of steel reinforcements

Methodology

- Evaluate baseline performance by predictive CAE engineering analysis
- Develop adhesive pattern
- Perform design sensitivity analyses to optimize structural response and adhesive pattern
- Develop metal panel thin gauging approach and weight reduction estimates

www.autosteel.org
Optimized Structural Response using BETAMATE Adhesives

Adhesive Treatment

- BETAMATE* Adhesive: + 0.25 kg
- Steel Downgauging: - 23.0 kg (-10%)

Weight Benefits

- **Cost reduction**
- **Improved performance over the baseline**
- **Mass reduction**

<table>
<thead>
<tr>
<th>Mode</th>
<th>Baseline BIW</th>
<th>Baseline BIW Adhesively Bonded</th>
<th>Optimized BIW Adhesively Bonded</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>32.24 Hz</td>
<td>32.22 Hz</td>
<td>32.23 Hz</td>
<td>Bending of lower radiator support cross member</td>
</tr>
<tr>
<td>2</td>
<td>33.17 Hz</td>
<td>35.32 Hz</td>
<td>35.05 Hz</td>
<td>1st Global bending</td>
</tr>
<tr>
<td>3</td>
<td>35.15 Hz</td>
<td>37.43 Hz</td>
<td>35.74 Hz</td>
<td>1st Global torsion</td>
</tr>
</tbody>
</table>

*Trademark of The Dow Chemical Company
Fracture Toughened Adhesives
For IIHS Side Impact

• Key questions
 ➢ Can structural bonding provide benefits in improving structural response during IIHS side impact
 ➢ What is the level of improvements that can be obtained
 ➢ What is the engineering approach in selecting adhesive location
 ➢ How could the benefits be further enhanced

• Baseline model
 ➢ Selected a full vehicle model having an “acceptable” structural rating
 ➢ Vehicle type: minivan

• Outputs
 ➢ B-Pillar intrusion
 ➢ Energy distribution

• Techniques
 ➢ LS-DYNA3D for full-vehicle analysis
Fracture Toughened Adhesives vs. Sheet Metal Thickness

Sheet Metal Thickness Sensitivity

Adhesive Location

B-Pillar intrusion improvement, mm

Sub-system

2.3 kg, 1.75 kg, 18.75 kg, 10.88 kg, 13.05 kg

B-Pillar intrusion improvement, mm

Adhesive location

BASE, FD, RD, SA, ALL, Optimum

0.6 kg

www.autosteel.org
Study Findings

• B-Pillar intrusion
 ➢ Fracture toughened adhesive provided 5.4 mm of B-Pillar intrusion over the baseline design
 ➢ Adhesive contribution to B-Pillar intrusion was independent of metal thickness, and grade of steel used
 ➢ Further improvements are viable with optimum sheet metal and joint design

• Adhesive contribution to body stiffness
 ➢ Match boxing – 0.2 Hz improvement
 ➢ 1st bending – 1.0 Hz improvement
 ➢ Torsion – 0.5 Hz improvement
 ➢ 2nd bending – 1.6 Hz improvement
Successful Integration and Execution

Additional tools to be added
- Joining technologies
 - Weld bonding
 - Optimized joint design
- Materials technologies
 - Superior fracture toughened adhesives
 - Robust processing
 - Robust adhesion to accommodate various metallic substrates and coatings
 - Robust curing window
 - Polymeric hybrid inserts
- Engineering analysis tools for predicting
 - Stiffness
 - Crashworthiness
 - Fatigue and durability

- Design
 - Cross section
 - Joint design
 - Reinforcement
 - Gage increase
- Materials
 - Cold rolled steel
 - High strength steel
 - Dual phase steel
 - TRIP
 - Bake hardenable
- Manufacturing/process
 - Welding (laser welding)
 - Hydroforming
 - Tailor welded blanks