Better Tool Steels for Better Dies
Balanced Properties for Optimum Performance

Ed Severson – Technical Manager
Bohler – Uddeholm United States
Introduction

• Bohler – Uddeholm Introduction
• Advanced High Strength Steels
 – Rapid Growth in Applications

• Balancing Act
 – Tooling Properties
 – Casting Properties
Tool Steels
Specialty Steels
Aircraft Alloys
Automotive Steels

Worldwide Distribution
And Manufacturing
Bohler – Austria
Uddeholm – Sweden
Villares – Brazil
Buderus – Germany
BUSMI - Virginia

www.autosteel.org
What can be expected with AHSS?

As much as possible

Consumer goods - Appliances

Tooling Solutions for advanced high strength steels Selection Guide - Uddeholm and SSAB
Advanced High Strength Work Materials

Formability, A_{80} (%)

- IF
- Mild Steel
- Bake Hardenable
- HSLA
- Trip-steel
- DP-steel
- Mart. steel

- 29 MPa (ksi)
- ~125HB
- ~180HB
- ~22HRC
- ~33HRC
- ~38HRC
- ~44HRC

www.autosteel.org
Balancing Act – High Strength Materials

Hardness

Tensile Strength
Yield Strength

Ductility

Stamping
Forming
Blanking
Bending
Drawing
Balancing Act – AHSS’s and Tooling

AHSS’s
High Tensile
High Yield
High Ductility

Tooling
Larger Forces
Greater Shock
Higher Wear
More Galling

All the positive properties of AHSS’s, decrease tooling life
Balancing Act – Optimizing Performance

• AHSS’s relatively new
 – TESTING CRITICAL
 – Each material different
UHS Work Material

Wear Mechanism
Docol 1400DP
6% die clearance

Number of blanks made

Punch wear (μm2)

- (S7) - 58 HRC
- (D2) - 58 HRC
- P/M 4%V - 58 HRC

www.autosteel.org
UHS Work Material

Wear Mechanism after 140,000 Strokes - Docol 1400DP

AISI S7 | AISI D2 | PM 4% Vanadium

www.autosteel.org
Punch wear after 200 000 strokes
Hardness 60 HRC, 10% cutting clearance

VANADIS 4 5675 µm²
VANADIS 6 6760 µm²
AISI D2 16260 µm²
8% Cr (29730 µm²)
1200 MPa – Work Material

PM 4% V

PM 4% V Improved

PM 6% V

8% Cr

AISI D2

Punches after 50 000 press strokes
Balancing Act – Tooling Materials

- Conventional Metallurgy Grades
- Spray formed Metallurgy Grades
- Powder Metallurgy Grades
- ESR Grades

- S7
- 5% Cr ESR
- A2
- 4% Van PM
- 7% Van SF
- 6% Van PM
- 8% Cr ESR
- 4% Van SF
- 10% Van PM
- D2
- 10% Van SF

Chipping Resistance vs. Wear Resistance
Balancing Act – Optimizing Performance

• AHSS’s relatively new
 – TESTING CRITICAL
 – Each material different

• “Old” tooling rules do not apply
 – Not simply wear or toughness but combination

Optimum performance not equal to optimum costs
Balancing Act - Castings

AHSS's

All the positive properties of AHSS’s, decrease tooling life

Castings

Larger Forces
Greater Shock
Higher Wear
Castability
Weldability
Balancing Act - Castings

Increasing Weldability

Increasing Chipping Resistance

Increasing Wear Resistance

SAE 0050A Cast

Carmo Wrought

Carmo Cast

M2 Wrought

A2 Wrought

D2 Wrought

Caldie Wrought

Caldie Cast

S7 Wrought

A2 Cast

www.autosteel.org
Tool Steel Casting Process - Video
Tool Steel Castings - Advantages

• **Controlled Melting**
 – Certified chemistry control
 – Controlled atmosphere melting for cleanliness
 – Shorter melt time (greater surface area)
 • DOE potential energy savings

• **Use of Tool Steel Alloys**
 – Upgraded properties from traditional materials
 – Wide variety of available materials
 • (With known properties)
Balancing Act – Summary

• AHSS’s force break from “Norm”
 – S7, D2, Casting Alloys not ideal

• Best Performance
 – Toughness and Wear Combination

• Testing is Key
 – Each new AHSS creates a new set of parameters
Better Tool Steels for Better Dies Balanced Properties for Optimum Performance

Ed Severson – Technical Manager
Bohler – Uddeholm United States

Thank You - Questions?