Cost Savings for Rocker Reinforcement through Material Conversion

J. Cheriyan

R. Bhatnagar & Dr. S.H. Lalam

www.autosteel.org
Outline

- Project Objective
- Martensitic Steel Overview
- Spot Weld Verification
- Summary
Project Objective

- 2004 Calendar Year MCR Project
 Replace bolt-on aluminum rocker beam with spot-welded martensitic roll form beam for targeted cost savings.
Prior: Aluminum Extrusion bolted to Underbody at Assembly Plant with 9 bolts
Extruded Aluminum Multi-Cell Cross-Section with compound cuts, and Structure Adhesive Tape, bolted on at Assembly Plant

Roll-Form Hat-Section Martensitic Beam, Spot-Welded to Floor Side Inner at Supplier Site.
Costs

- **Benefit**
 - Piece Cost Save
 - Labor Save

- **Expense**
 - New Part Tooling
 - Assembly Plant Modifications
 - Shipping Racks
 - Engineering
Risk Management

• Tooling kick-off concurrent with Vehicle Testing.

• Check points in the time line to stop the project, if something went wrong in testing.
Design Verification

- Safety CAE
 - Section Sizing
 - Full Vehicle Analysis
 - Front Offset
 - Side Impact

- Body CAE
 - Vehicle Durability
 - Body Stiffness
 - Seat Pull
 - Seat/Body Mount Attachment Stiffness

- Vehicle Durability
Full Crash Program

Front Offset, Side Impact, Sensor Calibration
Martensitic Steel Overview

- Conventional HSS
- IF
- IF
- HSLA
- DP, CP
- AHSS
- MART

Yield Strength (MPa) vs. Elongation (%)

Engineering Stress (MPa) vs. Engineering Strain
History of Martensitic Steel Applications

- 1980s Door Beams
- 1990s Bumper Beams (typically M190, M220)
- 2004 Underbody Rocker Beam (M130)
Martensitic Steels

- C < 0.25 wt%
- Martensite Matrix
- Strengthening
 - Phase Transformation
 - Solid Solution
- Ultra-High Strength, Low Formability
 - TS: 960-1550 MPa
 - YS: 900-1330 MPa;
 - T-EL: 5%
- Very high strength to weight ratio.
- Relatively small total elongation.
 - Ductile Fracture
Martensitic Steels - Processing

- The microstructure must be fully austenitized (>\(A_{c3}\))

- Rapid quenching is required.
 - The austenite \(\Rightarrow\) martensite transformation is diffusionless.
 - Must avoid the “nose” in the TTT-curve
 - \(~1000^\circ\)C/sec

- Tempering of the martensite is required to add ductility.
 - Martensite \(\Rightarrow\) Tempered Martensite (Ferrite + Fe\(_3\)C)
Martensitic Steels - Processing

I-T Diagram

(a)
Martensitic Steel Processing

Mittal Steel CAL Production Route

ENTRY END PROCESSING

STRIP CLEANING

WATER QUENCH

STRIP PICKLING

DELIVERY END PROCESSING

Anneal

Temper
Typical Martensite Chemistries

<table>
<thead>
<tr>
<th>Grade</th>
<th>SAE J2340 Designation</th>
<th>C</th>
<th>Mn</th>
<th>S</th>
<th>P</th>
<th>Si</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>M130</td>
<td>900 M</td>
<td>0.08</td>
<td>0.45</td>
<td>0.015</td>
<td>0.01</td>
<td>-</td>
<td>B, Ti</td>
</tr>
<tr>
<td>M160</td>
<td>1100 M</td>
<td>0.12</td>
<td>0.45</td>
<td>0.015</td>
<td>0.01</td>
<td>-</td>
<td>B, Ti</td>
</tr>
<tr>
<td>M190</td>
<td>1300 M</td>
<td>0.19</td>
<td>0.45</td>
<td>0.015</td>
<td>0.01</td>
<td>-</td>
<td>B, Ti</td>
</tr>
<tr>
<td>M220</td>
<td>1500 M</td>
<td>0.25</td>
<td>0.45</td>
<td>0.015</td>
<td>0.01</td>
<td>-</td>
<td>B, Ti</td>
</tr>
</tbody>
</table>
Manufacturing Methods

- All grades amenable to roll forming
- Weldable with conventional processes
 - Modified practices recommended for higher strength levels
- Design parts with recommended minimum bend radius to ensure manufacturability
 - 4*T for all Martensitic grades
Resistance Spot Welding

Nugget Hardness = f (Chem. composition, cooling rate)

HAZ Hardness = f(Chem. composition, base material microstructure, cooling rate)
Spot-Weld Certification

- Weld Lobe, Electrode Life, Microhardness

Production Controls
- Weld teardowns, SPC on welds, Weld Controls
Weld Schedule for
2.0 M130 - 1.75 DQSK Joint Stack-up

Power Mode : AC (60 Hz)
Electrode Force : 1200 lbf
Nominal weld time : 21 cycles
Hold Time : 05 cycles
Spot-Weld Certification

Weld Lobe

Current Range

www.autosteel.org
Weld Evaluation

Cross tension sample
Schematic diagram of various samples used to evaluate the spot weld strength

Tension (lap) shear sample.
Static Strength

M130 CR - DQSK GA

- **CT (Min):** 2487 lbf
- **CT (Max):** 3021 lbf
- **TS (Min):** 3657 lbf
- **TS (Max):** 4299 lbf

M130 CR - DDQ HDG

- **CT (Min):** 2054 lbf
- **CT (Max):** 2824 lbf
- **TS (Min):** 2858 lbf
- **TS (Max):** 3141 lbf
Peel Testing

M130 gripped in Vice

DDQ gripped in Vice

Fracture is always in DQSK HDG
Weld Testing - Peel Button

I_{MAX} \quad I_{MID.} \quad I_{MIN}
Microhardness Profile of Weld Joint

M130

DQSK

Distance (in)

Hardness (KHN)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

100 150 200 250 300 350 400 450

M130

DQSK
• Animation
Summary

• Martensitic Steels can be used for Body Structure applications
• Implemented in Production Dec. 2004
• Early involvement of various disciplines as well as suppliers helped accomplish this task in time

• Achieved $significant cost savings
Acknowledgement

- Williamsburg Manufacturing (Magna/Cosma)
- Buffalo Stamping Plant
- Wixom & St Thomas Assembly Plants
- Ford Product Development & Purchasing