AISI Bar Machinability Database of Steels Using Sintered Carbide Tools in Single Point Turning

Authors:
Roger A. Joseph - Consultant
Ronald Stout - Ispat Inland, Inc.
Presentation Outline

- Introduction
- Test Procedure
- Materials Tested
- Test Results
- Analysis and Discussion
- Conclusions
- Acknowledgments
Introduction

• 1991 AISI Machinability Roundtable
• Goal: Establish Automotive Industry Needs for Bar Steel Machinability Data
• Participants: Auto Makers, OEMs, Steel Makers, and Academia
• Outcome: Formation of the AISI Bar Machinability Sub-committee
• Devise a standardized single point turning machinability test
• Conduct a round robin test involving three materials and ten test labs to develop tool life data for un-coated sintered carbide tools
• Develop a data bank of machinability data on industrially significant bar steel materials for the automotive industry
Test Procedure

- WORKPIECE MATERIALS
 - Characterization
 - Steelmaking practice
 - Chemistry
 - Microstructure
 - Cleanliness
 - Hardness
 - Tensile properties
• WORKPIECE MATERIALS
 – Test Bar Size (nominal)
 • Diameter: 2.75 in. (90 mm)
 • Length: 16 In. (406 mm)
 • Cutting length: 12 in. (305 mm)
 • Cutting length to diameter ratio: 10
 • Chatter not permitted
• CUTTING TOOLS
 – Tool holder: Kennametal DSRNR(L) or equivalent
 – Insert style: SNMG 432 (uncoated, with molded chip breaker)
 – Insert grade: Valenite VC-5

• CUTTING FLUID
 – No cutting fluids were used
• CUTTING CONDITIONS
 – Depth of cut (DOC) = 0.100” (2.54 mm)
 – Feed rate (ipr) = 0.010 inch per revolution (.254 mm/r)
 – Cutting speed
 • Determined from the workpiece surface to be cut
 • Minimum of three test speeds
 • Tool life range: 5 min. TL 45 min.
• TOOL-LIFE MEASUREMENT
 – Method: Tool-makers microscope
 – Magnification: 20X minimum
 – Measure: Average and maximum flank wear
Flank Wear Zones and Wear Measurements

- Depth of cut notch
- Tangent point

Zone C Zone B Zone A

Original insert face

\[VB_{AVG} = \text{Average Uniform Flank Wear} \]
\[VB_{MAX} = \text{Maximum Flank Wear} \]

For Average Flank Wear (\(VB_{AVG} \)), Area \[\boxed{\quad} \] = Area \[\boxed{\quad} \]
• TOOL-LIFE END POINT CRITERIA
 – Average flank wear of 0.012” (0.3 mm) within Zone B
 – Maximum flank wear of 0.024” (0.61 mm) within any Zone
 – Catastrophic tool failure
• TOOL-LIFE END POINT CRITERIA
 – Minimum cutting time between measurements not less than one minute
 – Tool-life signature and a log-log plot of tool wear vs. cutting speed was recorded
 – Individual data points at each speed used in the regression analysis
 – The V30 speed and the 95% confidence intervals were calculated
Materials Tested

- 34 bar steel grades and variants tested
 - Plain carbon and C/Mn steels
 - Resulferized C/Mn steels
 - Alloy steels
 - Microalloy steels
 - Free cutting steels

- Materials were provided by steel producers from stock or heats produced specifically for this project
Materials Tested

<table>
<thead>
<tr>
<th>C & C/Mn</th>
<th>Result.</th>
<th>Alloy</th>
<th>MA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1018</td>
<td>1117</td>
<td>4118</td>
<td>13V45</td>
</tr>
<tr>
<td>1038</td>
<td>1141</td>
<td>4140</td>
<td>15V37</td>
</tr>
<tr>
<td>1045</td>
<td>1141V</td>
<td>4320</td>
<td>10V45</td>
</tr>
<tr>
<td>1050</td>
<td>1141Nb</td>
<td>4340</td>
<td></td>
</tr>
<tr>
<td>1070</td>
<td>1141Al</td>
<td>4620</td>
<td></td>
</tr>
<tr>
<td>1541</td>
<td>1144</td>
<td>5160</td>
<td>1215</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8620</td>
<td>12Bi14</td>
</tr>
</tbody>
</table>
• Desire to correlate machinability with material chemistry and properties
• Bethlehem Steel study mid 1900s
 – Extensive automatic screw machine test data base used
 – Correlated machinability index (MI) with material’s carbon equivalent
 – Used B1112 as MI=100%
 – Used high-speed-steel tools
Analysis & Discussion

Machinability Rating, Per Cent (8112 = 100% @ 170 fpm)

Per Cent Equivalent Carbon

As-Rolled, Cold-Drawn Steels
- Carbon
- Alloy

(Calculated from ferrite hardening effects of C, Mn, Si, Cr, Ni, Mo, and V.)
Several carbon equivalent equations investigated

Ito-Bessyo equation modified for sulfur content used

$$CE_{I-B} = C + \frac{Mn_{eff}}{20} + \frac{Si}{30} + \frac{Ni}{60} + \frac{(Cu+Cr)}{20} + \frac{Mo}{15} + \frac{V}{10} + 5*B$$

where

$$Mn_{eff} = Mn - (1.71*S)$$
Comparison of Brinell Hardness to Ito-Bessyo CE
• The Ito-Bessyo Carbon Equivalent was calculated for each steel grade in the study
• The V_{30} Tool-Life and 95% confidence interval for each steel grade was determined using the SAS statistical package
• The V_{30} vs. CE was plotted for the carbon and alloy steels
V30 vs CE for Carbon and Alloy Steels

Analysis & Discussion
• Result similar to Bethlehem study
• Data fitted to a 3rd order polynomial using MS Excel software
• The fitted curve has an $R^2 = 0.8$
• Maximum V_{30} at 0.26 CE
• Bethlehem study maximum at 0.40 CE
• Postulate difference due to carbide vs. high speed steel tooling
Analysis & Discussion

V30 vs CE for Resulferized & MA Steels

Ito-Bessyo C.E.

- 1200
- 11XX
- MA
• V_{30} decreased for 1215 grade
• V_{30} of 11XX grades fall on curve
• Unexpected result for free cutting steels
 • The extreme conditions that exist in the cutting zone with carbide tooling likely exceed the capabilities of MnS to significantly influence tool life
• Other effects of MnS were not studied
• V_{30} of microalloy grades fall on curve
• The higher strength of MA steels results from precipitation strengthening by V, Ti and/or Cb carbides
• Microalloy steels have a V_{30} tool life with carbide tooling commensurate with their Ito-Bessyo Carbon Equivalent
• More testing needed to verify
Conclusions

• Machining data generated with high speed steel tooling can not be directly extrapolated to applications involving carbide tooling

• Plain carbon and alloy steels were found to have a V_{30} tool life that correlates well with their Ito-Bessyo Carbon Equivalent when fitted to a 3rd order polynomial
Conclusions

- The V_{30} tool life of 1200 series, 1100 series and microalloy steels follow the same relationship.
- The V_{30} tool life of steel grades can be approximated by calculating their Ito-Bessyo Carbon Equivalent and plotting them on the fitted curve of this study.
Acknowledgements

• The authors wish to thank the American Iron and Steel Institute for its generous support of this study.

• The contribution of steel bars for the project from Ispat Inland, Inc., Macsteel, North Star Steel, Republic Engineered Products, Inc., Slater Steel, Stelco, Inc., The Timken Company, and USS-Kobe Steel are gratefully acknowledged.
Also to be commended for their time, effort and invaluable contributions to the project are the past and present members of the Bar Machining Sub-committee and their sponsoring affiliations: D. Anderson and T. Mackie, AISI; L. Brossard and J. Hansotte, Republic Engineered Products; W. Peppler and S. Gieman, North Star Steel; J. Christopher, Machining Research Inc.; P. Boppana, Valenite, Inc.; M. Burnett, C. Rupert, J. Brusso and P. Jarocowicz, The Timken Company; M. Marchwica and G. Millar, Stelco, Inc.; J. Tarajos, K. Goulait and M. Kniffen, DaimlerChrysler Corp.; J. Johnson, Ford Motor Co.; I. Shareef, Bradley Univ.; M. Crews, Metaldyne; M. Holly and D. Stephenson, General Motors Corp.; and M. Finn, IAMS.
Sponsored by: American Iron and Steel Institute