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3rd Gen AHSS
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Desire for lighter, stronger automotive bodies
3r? Generation advanced high strength steels

D. K. Matlock and J. G. Speer, “Processing Opportunities for New Advanced High-Strength Sheet Steels,” Materials and Manufacturing Processes, vol. 25, no. 1-3, pp. 7-13, Mar. 2010.
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Cracking During RSW
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Liquid metal embrittlement causes cracking in resistance
spot welds of 3'9 Gen AHSS
— Difficulty in implementation of 3rd Gen AHSS

C. Beal, et al., “Embrittlement of a Zinc Coated High Manganese TWIP Steel,” Materials Science and Engineering, vol. 543, pp. 76-83, May 2012.

Lee et al., “Microstructural evolution of liquid metal embrittlement in resistance-spot-welded galvanized TWinning-Induced Plasticity (TWIP) steel sheets,” Materials Characterization, vol. 148, pp. 233-241, Jan 2019.
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Liquid Zinc and Crack Path
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LME crack path coincides with presence of Zn from
galvanized coating

M. H. Razmpoosh, E. Biro, D. L. Chen, F. Goodwin, and Y. Zhou, “Liquid metal embrittlement in laser lap joining of TWIP and medium-manganese TRIP steel: The role of stress and grain boundaries,” Materials Characterization,
vol. 145, pp. 627-633, Nov. 2018.
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What is LME?

Presence of three components leads
to LME

\

Decrease in enerqy for grain boundary
decohesion due to grain boundary
penetration of liquid embrittler

v

Crack formation

M. Razmpoosh, et al., “Pathway to Understand Liquid Metal Embrittlement (LME) in Fe-Zn Couple: From Fundamentals toward Application,” Progress in Materials Science, vol. 121, pp. 1-29, Aug. 2021.
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What is LME?

SEM-EDS

25 um

Liquid zinc (T,,= 420 °C) forms
during the weld cycle
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What is LME?
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Tensile stresses form as substrate
heated, compressed, and cooled

S. Murugan, V. Vijayan, C. Ji, and Y. D. Park, “Four Types of LME Cracks in RSW of Zn-Coated AHSS,” Welding Journal, vol. 99, pp. 75-92, Mar. 2020.
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SUSCEPTIBLE MATERIAL

Generally, higher strength
(>900 MPa) with austenite/martensite

D. Bhattacharya et al., “Influence of the starting microstructure of an advanced high strength steel on the characteristics of Zn-Assisted liquid metal embrittlement,” Materials Science and Engineering: A, vol. 804, art. 140391, Feb. 2021.
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What is LME?

Presence of three components leads
to LME

\

Decrease in energy for grain boundary
decohesion due to grain boundary
penetration of liquid embrittler

-p Crack formation

Remove a leg of the triangle

m) Mitigate/Prevent LME
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Example Case: Effect of Substrate
Silicon and Aluminum Content on LME
Susceptibility




Example Case: Effect of Substrate
Silicon and Aluminum Content on LME

Susceptibility




Si Effect on LME: Material

- Laboratory produced
Alloy Si Al C Mn Hot rolled 1d rolled
Low Si 0.5 0.05 025 2.67 ot rofied, cold roied,
e continuous annealed
High Si 1.5 0.05 0.25 2.67

 Electrogalvanized
1.551 BNNIZZ s it
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Hot Tension Testing
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Si Effect on LME: Hot Tension Testing

0.5 wt.% Si containing AHSS

1.5 wt.% Si containing AHSS
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1.5Si AHSS showed greater

S mm

ductility loss than 0.5Si AHSS

D. Bhattacharya et al., “Influence of selected alloying variations on liquid metal embrittlement susceptibility of quenched and partitioned

steels,” Materials & Design, vol. 224, pp. 1-20, Dec. 2022.
D. Bhattacharya et al., “Silicon effect on retardation of Fe-Zn alloying behavior: Towards an explanation of liquid zinc embrittlement
ccdmn, S susceptibility of third generation advanced high strength steels,” Corrosion Science, vol. 235, art. 112161, July 2024.
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Si Effect on LME: SEM Observations

Solidified Liquid Zn
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(b)

Si Effect on LME: STEM-EDS Observations
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Si, Mn Concentration (wt. %)

Si enrichment at
coating-substrate
interface and

presence of Si-rich
a-Fe(Zn)

D. Bhattacharya et al., “Silicon effect on retardation of Fe-Zn alloying behavior:

7 Towards an explanation of liquid zinc embrittlement susceptibility of third

generation advanced high strength steels,” Corrosion Science, vol. 235, art.
112161, July 2024.




Sl Effect on LME Ther and Diff. Modeling
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Si enrichment predicted at interface
— Stabilization of liguid and a-Fe(Zn) phases

D. Bhattacharya et al., “Silicon effect on retardation of Fe-Zn alloying behavior: Towards an explanation of liquid zinc embrittlement susceptibility of third generation advanced high strength steels,” Corrosion Science, vol. 235, art. 112161, July 2024.
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Effect of Si on LME Susceptibility

1.5Si AHSS exhibited higher LME susceptibility
than 0.5Si AHSS

Increasing Si content in the substrate:
— Lead to Si enrichment at interface

— Suppressed Fe-Zn intermetallic reactions

— Increased liquid fractions at interface
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Example Case: Effect of Substrate
Silicon and Aluminum Content on LME
Susceptibility




Al Effect on LME: Material
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Al Effect on

LME: Hot Tension Testing
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AHSS as compared to 0.05Al

J. Colburn, J. G. Speer, and J. Klemm-Toole, “Effect of substrate Al content on liquid metal embrittlement susceptibility in quench and partitioned steels,” Materials Science and
Engineering: A, vol. 922, art. 147636, Feb. 2025.
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Al Effect on LME: SEM-BSE
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| Less Zn (high contrast
regions) penetration
and enrichment
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J. Colburn, J. G. Speer, and J. Klemm-Toole, “Effect of substrate Al content on liquid metal embrittlement
susceptibility in quench and partitioned steels,” Materials Science and Engineering: A, vol. 922, art. 147636
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Al Effect on LME: Ther. and Diff. Modeling
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J. Colburn, J. G. Speer, and J. Klemm-Toole, “Effect of substrate Al content on liquid metal embrittlement susceptibility in quench and partitioned steels,” Materials Science and Engineering: A, vol. 922, art. 147636, Feb. 2025.
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Al Effect on LME: Ther. and Diff. Modeling

030 1T 030 T
800 °C 1 ; 800 °C
0.25; / 20 wt pct Zn a-_f'errite_: 0-25:_ y-austenite
0.20 g.____:';:___;)/ 40 wt pct Zn - 020:_ / 20 wt pct Zn _

. AN ] : 15 wt pct Zn ]
r 60 wt pct Zn ] 10 Wt pet 7 ]
0.15¢ . ] wt pct Zn ]

S wtpetZn

>/ 80 wt pct Zn ]
e 10 wtpct Zn

Increasing Al decreases:

1 wt pct Zn ]

Mass Fraction of Zn in o
Mass Fraction of Zn in y
e
O

Equilibrium fraction — % 1/

Of Zn Al Concentration (wt pet) Al Concentration (wt pct)

and - — - 300wtpetzn ]
Diffusivity of Zn
in substrate

N
[
-~

_\ ‘\ — = 40.0 wt pct Zn J
- \ '\ ===+ 50,0 wt pet Zn 4
y \ = = 60.0 wtpct Zn o
S AN ==+ 70.0 wt pet Zn
k ==+ 80.0 wt pct Zn |

(%]
- -
e

3]

p—
LI B R |

Diffusion Coefficient of Zn in o (m?2/s)

0....

Al Concentration (wt pct)
J. Colburn, J. G. Speer, and J. Klemm-Toole, “Effect of substrate Al content on liquid metal embrittlement susceptibility in quench and partitioned steels,” Materials Science and Engineering: A, vol. 922, art. 147636, Feb. 2025.
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Al Effect on LME: Ther. and Diff. Modeling

Increasing Al decreases: Decrease flux of Zn in
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Of Zn Liquid Zn a-Fe Substrate

and J, = -Dlé‘_x
Diffusivity of Zn Zn, o b, 8
In substrate . L ]\_(

...
L
L]
L]

Zn Concentration

| | ..'o
| {
X0 X
Distance

J. Colburn, J. G. Speer, and J. Klemm-Toole, “Effect of substrate Al content on liquid metal embrittlement susceptibility in quench and partitioned steels,” Materials Science and Engineering: A, vol. 922, art. 147636, Feb. 2025.
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Effect of Al on LME Susceptibility, Pt 1

1.38A] AHSS exhibited lower LME susceptibility and
less Zn penetration and enrichment ahead and
around LME cracks than 0.05A/ AHSS when hot
tension tested at 800 °C

Thermodynamic and diffusion calculations predict:

Al enrichment at coating-substrate interface

Decreasing equilibrium mass fraction and diffusivity
of Zn in substrate

Stabilization of I_ phase at expense of liquid phase
with increasing Al at interface (up to 3 wt pct Al)
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Al Effect on LME: RSW Testing

Table 2 — RSW Parameters

Force Squeeze Current Weld Time Pulse Hold Time H>O Flow Rate
Parameter

(kN) {ms) (KA) (ms) Count (ms) (gpm)

Value 4.0 1500 6.0-9.5 600 1 250 1.0
. nL
B 00571 WER LIBAI . LME Metric: Crack Index = —

ek
=
LI R e p—

n : number of cracks
L : lognormal median crack length

<
o0

& .
N
T T T T T T T T T T T

t : sheet thickness

Higher Al (1.38Al) AHSS

Average Crack Index
o
[*))

e exhibited lower crack index
(LME susceptibility) at all
0! but one current level

-1.0 kKA -0.5 kA +/-0 kA +0.5 kKA +1.0 kA
Weld Current Relative to Expulsion Current
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Al Effect on LME: 0.05A1 LOM and SEM

0.05Al: -1.0 kA 0.05Al: +1.0 kA

Low Al (0.05A]):

Super-critical HAZ
extends to weld

periphery at all weld
currents
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Al Effect on LME: 1.38Al LOM and SEM

1.38Al: -1.0 kA 1.38Al: +1.0 kA

High Al (1.38Al):

Inter-critical HAZ
present at weld
periphery at all weld
currents

Ferrite %
) v- ‘
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Al Effect on LME: Transformation Temps.

Alloy A, (°C) A;(°C) (Ag3-Ag) (°C)

0.05 Al 740 850 110

1.38 Al 740 970 230

*Transformation temperatures determined
via dilatometry
(Heating rate: 5 °C/s, Cooling rate: 50 °C/s)

Higher A_; temperature
and wider inter-critical
range in 1.38Al AHSS
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Al Effect on LME: SE- and EDS-SEM

SE- and EDS-SEM at weld shoulder

1.38A1

0.05Al |

High Al AHSS(inter-
critical HAZ) exhibits
less Zn enrichment and
penetration than Low Al
AHSS (super-critical
HAZ)
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Al Effect on LME: HAZ Microstructure

At peak temperature:
Austenite  Austenite + ferrite

EARTH

ENERGY

ENVIRONMENT

Inter-critical
microstructure

— Finer effective
microstructure and

more tortuous crack
path




Effect of Al on LME Susceptibility, Pt 2

1.38Al AHSS exhibited lower crack index than
0.05A1 AHSS during RSW testing

The 1.38Al AHSS spot welds also exhibited:

An inter-critical HAZ extended into the weld

periphery (as compared to super-critical HAZ for
the 0.05AI welds)

Less Zn enrichment and penetration around and
ahead of LME cracks

Finer effective (inter-critical) microstructure in the
weld shoulders and periphery
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Substrate Compositional Factors that
Affect LME Susceptibility




How Does Composition Affect LME?

How does the alloying addition affect:

1. Stability of Fe-Zn intermetallics versus
liquid phase?

2. Substrate microstructure at elevated
(susceptible) temperatures?

3. Zn diffusion and penetration?
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How Does Composition Affect LME?
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1. Stabilization of Fe-Zn intermetallics versus
liquid phase
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2. Substrate microstructure at elevated (susceptible)
temperatures

How does the alloying addition affect:

Effective microstructure size?

Fraction of a more susceptible
microstructure?

Microstructure at more susceptible
locations of weld?

COLORADO MINES MINES.EDU

EARTH ENERGY ENVIRONMENT



800 °C
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Al Effect on LME: SEM-EDS
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