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TRB – Tailor Rolled Blank (Flex Cold-Rolling)

Concept  

› Cost efficient lightweight parts with load and 

function-optimized material usage

Implementation

› Flexible Cold-Rolling Process

› Flat material with repeated, varying thickness runs 

and harmonious transition zones

› Thickness run optimization drives the cost efficiency

Targets / Benefits 

› Functional Improvement (Performance, Manufacturing, Quality)

› Part Integration / Design Simplification

› Weight Reduction / Cost Reduction

Established technology with over 20 years in mass production partnered with several renowned Global OEM’s!



Mat. Innovation – Mubea TailorHardened (MTH)

MTH → cost effective process flow

Raw Material

(HR500LA) Flex Rolling

Homogeneous 

mechanical properties

“HC380 LA TRB“ 

Conventional → TRB cold-forming process flow 

Part 

ProductionBatch Annealing

Raw Material

(DD13) 

Batch Annealing

Flex Rolling

Part 

Production

TailorHardened

mechanical properties

“MTH 260Y/530Y TRB“

Manufacturing cost reduction through shorter process flow and less expensive raw material! 



MTH – Mechanical Properties Behavior 

Cost Efficient Component Design & Manufacturing with Local Tailored Properties! 

Example: MTH575Y/720Y from HR500LA
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Raw Material Gauge: 3.0 mm

YS

15% RR

11%

740MPa
Thin sections (hard)  

with high strength 

to reduce weight

25% RR

8%

800MPa

720MPa



MTH – Mat. Characterization Status & Next Steps

Next Steps = Fatigue Assessment Plan → Specimen Tests + Math Approach + Part Validation

› MTH → Flex Cold-Rolled Steel based on HSLA grades → increasing Yield and Tensile Strength through Dislocation Hardening

› High gauge → mechanical properties slightly elevated due to minor Rolling Reduction with Higher Elongation Capability

› Low gauge → enhanced mechanical properties due to major Rolling Reduction with Higher Yield & Tensile Strength Levels

› How about Fatigue → Do MTH steels show comparable increased Fatigue Strength? How to predict it reliably?
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Motivation – Fatigue Approach

Service loading conditions Stress-strain behavior Deriving of material 

properties for CAE 

application 



Test Campaign

- Strain-controlled fatigue tests [R=-1] according to ISO 12106, SEP1240, ASTM E606

- Force-controlled fatigue tests [R=-1] according to ISO 12107, DIN 50100

- 5 different rolling reductions (RR): 0%, 10%, 20%, 30%, 40%

- 2 roll-to-force orientations: 0°, 90°
load cell

clamping system

anti-buckling 
device

extensometer

specimen

load introduction

roll-to-force 0° roll-to-force 90°
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Specimen Test



Stress-Strain Curves
Influence of rolling reduction on the cyclic stress-strain behavior

• Raw material, RR=0%

• Solid line: Initial stress-strain behavior 

(comparable to quasi-static) 

• Black dots: Cyclic stress-strain behavior 

(focus of investigations in this study)

• Each datapoint is the result of one 

individual fatigue test  



Stress-Strain Curves
Influence of rolling reduction on the cyclic stress-strain behavior

• RR=10%

• A slight increase in strength with increasing 

rolling reduction can be observed, yet not 

very distinctive 



Stress-Strain Curves
Influence of rolling reduction on the cyclic stress-strain behavior

• RR=20%

• From 20% of rolling reduction onwards 

the increase in strength becomes 

apparent

• Increase of around 16% of the stress 

amplitude at 0.8% of strain compared to 

initial condition



• RR=30%

• Further increase of strength, but significantly 

less gain than between 10% and 20%

Stress-Strain Curves
Influence of rolling reduction on the cyclic stress-strain behavior



Stress-Strain Curves
Influence of rolling reduction on the cyclic stress-strain behavior

• RR=40%

• Slight increase of strength



Anisotropic behavior observed due to rolling 

MTH benefit: strength increase can be observed 

in both directions of roll-to-force

Difference between 0° and 90° for RR=40%

• at 0.2% of strain the stress amplitude for the 

90° specimen was about 12% higher than the 

0° specimen

• at 0.8% of strain the stress amplitude for the 

90° specimen was about 15% higher than the 

0° specimen

Stress-Strain Curves
Influence of rolling reduction on the cyclic stress-strain behavior



Fatigue Test Results

• Raw material, RR=0%

• Strain-controlled up to 106 cycles

• Force-controlled up to 107 cycles



Fatigue Test Results

• RR=10%

• While the influence of 10% rolling reduction 

was not very distinctive in the stress-strain 

curve, increase is apparent within the strain-

life curve!

MTH 

strength 

increase

MTH fatigue 

life increase



Fatigue Test Results

• RR=20%

• Further increase in fatigue strength can be seen



Fatigue Test Results

• RR=30%

• Both fatigue life and fatigue strength show 

significant gains



Fatigue Test Results

• RR=40%

• Further gains 

• Fatigue life >106 for automotive applications: 

• further gains in fatigue strength that can be 

exploited



Fatigue Test Results

+175%
+45%

• RR=40%

• Further gains 

• Fatigue life >106 for automotive applications: 

• further gains in fatigue strength that can be 

exploited

• RR=0 % (Raw material) vs. RR=40%:

• Fatigue life: ~+175% (at ԑa,t=0.3 %)

• Fatigue strength: ~+45% (at N=107)



Fatigue Test Results
Anisotropic behavior

• Comparable behavior for the specimens 

extracted at 0° roll-to-force



Fatigue Behavior –
Math. Approach 
(CAE-Application)



Cyclic Material Behavior
Strain-life and cyclic stress-strain curves
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Fatigue Behavior – Math. Approach (CAE-Application)

Ramberg-Osgood

Cyclic stress-strain and strain-life curve / Conventional models

Basquin-Coffin-Manson-Morrow

not enough 

accuracy

not enough 

accuracy

~50 MPa

~55 MPa



Check of the material model
Cyclic flow curve – log(a) vs. log (a,p)-curve – compatibility condition

R2
BCMM = 0.521

R2
REGRESSION = 0.985

• Red line: 

• Determined using the compatibility condition

• Basquin-Coffin-Manson-Morrow does not 

have enough accuracy

• Blue line: 

• Fits the datapoints according to regression 

• Significantly different values K‘ and n‘ for the 

cyclic stress-strain curve according to 

Ramberg-Osgood

~100 MPa



Fatigue Life Curve – New Math. Approach

• Fatigue Life Curve as an improved approach with 

higher accuracy to describe cyclic material behavior 

compared to conventional models

• Partition of the strain-life curve into three regimes 

depending on the cyclic stress-strain behavior

• Regime 1: elastic-plastic 

• Regime 2: transition zone

• Regime 3: macroscopic elastic

• Combination of strain- and force-controlled test results 

possible with Fatigue Life Curve

• Recommended by German Association of the 

Automotive Industry (VDA) 239:300 

(Source: R. Wagener und T. Melz, "Deriving a continuous fatigue life curve 
from LCF to VHCF", SAE Technical Paper, 2017-01-0330, 2017.)

Characteristic values



S700MC, t=4.0 mm, RR=0%, roll-to-force: 90°
Fatigue Life Curve



Deriving of Calculated Fatigue Life

1st Step: stress calculation 

of applied force 

2nd Step:

determination 

of strain value

3rd Step: calculation of fatigue life



Comparison of Calculated and Experimental Fatigue Life

R2
FLC = 0.932R2

BCMM(overall) = 0.754

R2
BCMM(30,000 > x > 2,000,000) = 0.801



Part Validation



Part Validation

1. Strains calculated from FE

2. Taking into account influence of edges by shifting the Fatigue 

Life Curve downwards through multiplication of strain value at 

N=1000 (×0.6) and N=100000 (×0.73) [1]

3. Fatigue Life from Fatigue Life Curve using FE-strains

4. Using Dcharacteristic instead of Dtheoretical takes into account force-

controlled bending loading [2]

5. Comparison calculated fatigue life vs. experimental data

37% 62%

[1] Häfele, P.; Volk, W.; Dittmann, F.; Pätzold, I.: Einfluss der Kantenbearbeitung auf die Festigkeitseigenschaften von Stahl-Feinblechen unter quasistatischer und schwingender Beanspruchung. FAT Schriftenreihe 306, VDA, FAT (2018).

[2] Karsten Nikkel: Lebensdauerabschätzung für Bauteile aus umgeformten Feinblechen in Abhängigkeit vom Simulationsaufwand, Diss. TU Clausthal, 2013.



Summary & Outlook

• MTH has a positive influence on the structural durability by increasing rolling reduction leading to:

• Increase in fatigue life (reduced strain amplitude at same stress level)

• Increase in fatigue strength (higher stress level for same strain amplitude)

• The Fatigue-Life Curve provides much more accuracy compared to the traditional approaches 

(Basquin-Coffin-Manson-Morrow and Ramberg-Osgood)

• Validation (Fatigue-Life Curve vs. experimental results) using automotive part shows satisfactory correlation

• Next step: Weld seams



Thank you for your attention!
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