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TRB - Tailor Rolled Blank (Flex Cold-Rolling) GDIS

Concept

> Cost efficient lightweight parts with load and
function-optimized material usage

Implementation

> Flexible Cold-Rolling Process

> Flat material with repeated, varying thickness runs
and harmonious transition zones

> Thickness run optimization drives the cost efficiency

Targets / Benefits

> Functional Improvement (Performance, Manufacturing, Quality)
> Part Integration / Design Simplification
> Weight Reduction / Cost Reduction

Established technology with over 20 years in mass production partnered with several renowned Global OEM’s!



Mat. Innovation — Mubea TailorHardened (MTH) GDIS

Conventional 2 TRB cold-forming process flow
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MTH - cost effective process flow
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(DD13) Flex Rolling Batch Annealing Production “MTH 260Y/530Y TRB*

Manufacturing cost reduction through shorter process flow and less expensive raw material!




MTH — Mechanical Properties Behavior GDIS

Example: MTH575Y/720Y from HR500LA

Raw Material Gauge: 3.0 mm
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Cost Efficient Component Design & Manufacturing with Local Tailored Properties!



MTH — Mat. Characterization Status & Next Steps

GDIS
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MTH - Flex Cold-Rolled Steel based on HSLA grades = increasing Yield and Tensile Strength through Dislocation Hardening

High gauge - mechanical properties slightly elevated due to minor Rolling Reduction with Higher Elongation Capability

Low gauge - enhanced mechanical properties due to major Rolling Reduction with Higher Yield & Tensile Strength Levels

How about Fatigue = Do MTH steels show comparable increased Fatigue Strength? How to predict it reliably?

Next Steps = Fatigue Assessment Plan - Specimen Tests + Math Approach + Part Validation




Motivation — Fatigue Approach

Service loading conditions

misuse
overloads

standard service loads

life
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Test Campaign GDIS

- Strain-controlled fatigue tests [R=-1] according to ISO 12106, SEP1240, ASTM E606
- Force-controlled fatigue tests [R=-1] according to ISO 12107, DIN 50100

- 5 different rolling reductions (RR): 0%, 10%, 20%, 30%, 40%
: : <+—— |0ad cell
- 2 roll-to-force orientations: 0°, 90° —
roll-to-force 0° roll-to-force 90° e Clamplng system
A A anti-buckling
~ device
_»>—<_abzll
c I I I I I I I I -- -- extensometer
= = -
3] | -
= = - :
&) [ — - specimen
= | -
= | = -
S
o

+— |0ad introduction




Specimen Test



Stress-Strain Curves

Influence of rolling reduction on the cyclic stress-strain behavior

stress amplitude o, [MPa]
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Raw material, RR=0%

Solid line: Initial stress-strain behavior
(comparable to quasi-static)

Black dots: Cyclic stress-strain behavior
(focus of investigations in this study)

« Each datapoint is the result of one
individual fatigue test



Stress-Strain Curves GDIS

Influence of rolling reduction on the cyclic stress-strain behavior
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Stress-Strain Curves GDIS

Influence of rolling reduction on the cyclic stress-strain behavior
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Stress-Strain Curves GDIS

Influence of rolling reduction on the cyclic stress-strain behavior
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Stress-Strain Curves GDIS

Influence of rolling reduction on the cyclic stress-strain behavior
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Stress-Strain Curves

Influence of rolling reduction on the cyclic stress-strain behavior
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Anisotropic behavior observed due to rolling

MTH benefit: strength increase can be observed
in both directions of roll-to-force

Difference between 0° and 90° for RR=40%

« at 0.2% of strain the stress amplitude for the
90° specimen was about 12% higher than the
0° specimen

« at 0.8% of strain the stress amplitude for the
90° specimen was about 15% higher than the
0° specimen



Fatigue Test Results
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Fatigue Test Results GDIS
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Fatigue Test Results GDIS
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Fatigue Test Results

strain amplitude ¢, [%] (log)

10° 4

t, RR, roll-to-force
® 4.0mm, 0%, 90°
3.6mm, 10%, 90°

S700MC

10"

)
® 3.2mm, 20%, 90°-
° . e 2.8mm, 30%, 90°
[ ]
o
«e
[
(N X )
| I ]
000
o
o % o ]
°
L s E
® Ny .. ..—"
—» run out -Hl B
® / N |s’train- /forcel— controlled | | |
L | L | R | R | oo TR
102 10° 10* 10° 10° 107

number of cycles to failure N¢ (log)

GDIS

RR=30%

Both fatigue life and fatigue strength show
significant gains



Fatigue Test Results GDIS

L bR | L | vor PR ETT L ° — 0
S700MC t, RR, roll-to-force RR=40%
® 4.0mm, 0%, 90°
. e 3.6mm, 10%, 90°  Further gains
S 100+ e 3.2mm, 20%, 90°4
= * ® e 2.8mm, 30%, 90°] : : 5 : S
r— ’ ’ J ° > .
9 L o 2.4mm. 40% 90°. Fatigue life 19 fF)r au.tomotlve applications:
I cme -  further gains in fatigue strength that can be
o o : exploited
= (e
o ® o
& s@0
© o ®
c e o,
o % %
_|L__' [ ] == 4
Z ot dE
o g ®_
—» run out -.!., "
® / B strain- /force- controlled
10" +—/—""t———"—t——t—————t—
10? 10° 10* 10° 10° 107

number of cycles to failure N (log)



Fatigue Test Results
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Further gains

Fatigue life >10° for automotive applications:

further gains in fatigue strength that can be
exploited

RR=0 % (Raw material) vs. RR=40%:
~+175% (ate,,=0.3 %)
« Fatigue strength: ~+45% (at N=10)

« Fatigue life:



Fatigue Test Results GDIS

Anisotropic behavior
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Fatigue Behavior —
Math. Approach
(CAE-Application)



Cyclic Material Behavior

Strain-life and c
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Fatigue Behavior — Math. Approach (CAE-Application) GDIS

Cyclic stress-strain and strain-life curve / Conventional models

~55 MPa
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Check of the material model

GDIS

Cyclic flow curve —log(c,) vs. log (g, ,)-curve — compatibility condition

~100 MPa

stress amplitudj

——regression, best fit
Basquin-Coffin-Manson-Morrow 1

S700MC
t=4.0mm |
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0.521
0.985

Red line:

« Determined using the compatibility condition

« Basquin-Coffin-Manson-Morrow does not
have enough accuracy

Blue line:

 Fits the datapoints according to regression

 Significantly different values K* and n’ for the
cyclic stress-strain curve according to
Ramberg-Osgood



Fatigue Life Curve — New Math

Characteristic values
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cycles to crack initiation N,

10°

. Approach GDIS

Fatigue Life Curve as an improved approach with
higher accuracy to describe cyclic material behavior
compared to conventional models

Partition of the strain-life curve into three regimes
depending on the cyclic stress-strain behavior

Regime 1: elastic-plastic
Regime 2: transition zone
Regime 3: macroscopic elastic

Combination of strain- and force-controlled test results
possible with Fatigue Life Curve

Recommended by German Association of the
Automotive Industry (VDA) 239:300

(Source: R. Wagener und T. Melz, "Deriving a continuous fatigue life curve
from LCF to VHCF", SAE Technical Paper, 2017-01-0330, 2017.)



S700MC, t=4.0 mm, RR=0%, roll-to-force: 90° GDIS

Fatigue Life Curve
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Deriving of Calculated Fatigue Life

lt“

BISCHENCK
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of applied force
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3'd Step: calculation of fatigue life



Comparison of Calculated and Experimental Fatigue Life GDIS
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Part Validation



Part Validation

1. Strains calculated from FE

2. Taking into account influence of edges by shifting the Fatigue
Life Curve downwards through multiplication of strain value at
N=1000 (x0.6) and N=100000 (x0.73) [1]

3. Fatigue Life from Fatigue Life Curve using FE-strains

4. Using D paracterisiic INStead of Dy,qqreiicar t@KES iNto account force-
controlled bending loading [2]

5. Comparison calculated fatigue life vs. experimental data
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[1] Hafele, P.; Volk, W.; Dittmann, F.; Patzold, I.: Einfluss der Kantenbearbeitung auf die Festigkeitseigenschaften von Stahl-Feinblechen unter quasistatischer und schwingender Beanspruchung. FAT Schriftenreihe 306, VDA, FAT (2018).
[2] Karsten Nikkel: Lebensdauerabschéatzung fir Bauteile aus umgeformten Feinblechen in Abhangigkeit vom Simulationsaufwand, Diss. TU Clausthal, 2013.



Summary & Outlook GDIS

MTH has a positive influence on the structural durability by increasing rolling reduction leading to:

* Increase in fatigue life (reduced strain amplitude at same stress level)
* Increase in fatigue strength (higher stress level for same strain amplitude)

« The Fatigue-Life Curve provides much more accuracy compared to the traditional approaches
(Basquin-Coffin-Manson-Morrow and Ramberg-Osgood)

« Validation (Fatigue-Life Curve vs. experimental results) using automotive part shows satisfactory correlation

Welded specimens

» Next step: Weld seams

it

Force amplitude F, [kN] (log)

® Testresults
@ Run outs

Cycles until failure N¢ (log)




Thank you for your attention!
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