GREAT DESIGNS IN

COST EFFECTIVE COLD FORMING SOLUTIONS WITH TAILOR ROLLED PRODUCTS

Markus Zoernack – Engineering Manager

Torben Wilks – Group Leader TRB

Mubea Tailor Rolled Blanks

COMPANY FACTS

- Owner-operated family company since 1916
- Lightweight component design specialist
- Vertical integration from raw material to finished product
- Internal development of products and production processes

NORTH & SOUTH AMERICA:

- 5 locations
- 2,500 employees

EUROPE:

- ASIA:
- 31 locations

- 14 locations
- 9,700 employees 1,800 employees

FLEXIBLE ROLLING PROCESS

GDIS

Flexible rolling:

<u>ldea</u>

 Lightweight parts with load and function-optimized material usage and improved performance

Implementation

- Flexible Cold-Rolling process
- Flat material with repeated, varying thicknesses and harmonious transition zones
 - No heat affected zone
 - No notch effect
 - No stress peaks at thickness changes
- Thickness distribution change is software driven
 - Thickness run optimization drives the cost efficiency

Targets / Benefits

- Weight reduction
- Part integration/design simplification led to cost reduction
- Functional improvement (crash, manufacturing, etc.)

Mubea TailorSoftened: GENERAL IDEA

Tensile Strength R_m [MPa]

MUBEA TAILORSOFTENED-PRINCIPLE

Conventional TRB process flow

Raw Material S700MC x 3.0 mm

Flex Rolling Batch Annealing

Blanking/Forming

Homogeneous mech. properties

CR500LA TRB

Conventional TRB process flow

Mubea TailorSoftened MTS 700Y/500Y TRB

- Mubea generic Door Intrusion Beam concept geometry
- Hat shape design with same center cross section and percent rolling reduction
- Surrogate hat shaped part used for material card validation

MTS INTRUSION BEAM FORMABILITY

- Hot forming simulation with 1.30 mm monolithic PHS material => safe
- Cold forming simulation with 2.00 mm monolithic CR700LA => not feasible
- Cold forming simulation with 1.20/1.40/2.00 mm MTS 700Y/500Y TRB => safe

Cost effective cold forming alternative with two property zones \implies high strength and high formability

MTS – COST BENEFITS

- MTS TRB achieves same performance as benchmark
- MTS TRB offers cost reduction potential with comparable weight

MUBEA TAILOR HARDENED: GENERAL IDEA

Idea of TailorHardened TRB was driven by filling gap in material portfolio (CR500 <-> PHS)

Tensile Strength R_m [MPa]

CUSTOMER BENEFITS BEYOND WEIGHT REDUCTION GDIS

Functional Improvement:

Benefits

- Crash optimization
- Optimal definition of deformation pattern

Part Integration:

Benefits

- No sub-assembly
- Less investment
- Reduced supply chain cost
- Improved CO₂ footprint
- Weight reduction

Cost Reduction by MTH*

* Mubea TailorHardened

Benefits

- Cost reduction by...
 - elimination of process steps
 - lower grade raw material usage
- Performance improvement
- Weight reduction as side effect

MUBEA TAILOR HARDENED: PROCESS

Conventional TRB process flow

- Cost efficiency of Mubea TailorHardened material is realized by:
 - usage of inexpensive grade raw material
 - elimination of process step (annealing)

MUBEA TAILOR HARDENED: EFFICIENCY

TailorHardened cost effective process flow

- MTH achieves same performance as benchmark by lifting properties of inexpensive raw material
- MTH TRB offers additional weight advantage up to ~15% → max. customer benefit in weight & cost

MUBEA TAILOR HARDENED: FORMING TRIALS GDIS

- Performed multiple forming trials in existing series tooling & built prototype dyes
- Great results during forming trials with formability & dimensional stability
 - up to 3-point bending trials without any crack indications
 - results beyond expectations if only considering elongation properties A₅₀
 - → S550MC / 35% rolling red
 → 910Y / 960T / 5.0% A₅₀

MUBEA TAILOR HARDENED: VALIDATION

1. Development of MTH Material Cards

- Based on DD13, S420, S700, CP800 further base materials in progress
- Characterization of material quasi static & dynamic
- Forming limit curves
- Fracture limit curves

MUBEA TAILOR HARDENED: VALIDATION

1. Development of MTH Material Cards

2. CAE Simulations including failure (CrachFem/Gissmo)

MUBEA TAILOR HARDENED: VALIDATION

1. Development of MTH Material Cards

2. CAE Simulations including failure (CrachFem/Gissmo)

3. Physical **Static** 3-point bending testing

- Performed trials on hat profiles with different:
 - materials (DD13, S700)
 - rolling degrees (5% 50%)
- No cracking of the material
 - great correlation to static simulation

MUBEA TAILOR HARDENED: VALIDATION

1. Development of MTH Material Cards

2. CAE Simulations including failure (CrachFem/Gissmo)

3. Physical **Dynamic** 3-point bending testing

- Performed drop tower testing on hat profiles with different:
 - materials (DD13, S700)
 - rolling degrees (5% 50%)
 - energies (4 -8kJ)

 Target to initiate cracking on higher energy levels for optimized correlation analysis

MUBEA TAILOR HARDENED: VALIDATION

1. Development of MTH Material Cards

2. CAE Simulations including failure (CrachFem/Gissmo)

3. Physical **Dynamic** 3-point bending testing

- 4. Correlation Simulation vs. Physical Testing
 - Successful correlation could be stated on:
 - detailed element tracking
 - crack initiation (time & location)

+ Failure; crack Initiation

MTH APPLICATIONS IN UNIBODY & BOF

Alternative design solution in development: MTH closed profile with horizontal layers for Bumper and Frame Rail applications

- Multiple potential applications for MTH have been identified and are currently in development
- BEV architectures in Unibody & BoF have geometry and performance requirements to enhance MTH advantages

MTH: RESUME & OUTLOOK

- Idea TailorHardened TRB driven by filling gap in current material portfolio
- Simple ferritic hot rolled raw material properties are being "lifted up" by cold rolling
- Cost reduction by ...
 - usage lower grade material (lifting properties)
 - elimination of process step (annealing)
- Multiple successful forming trials in ...
 - existing series tooling
 - specifically built prototype dies
- Creation of material cards for forming and crash (Partner: MatFem)
 - first material cards available (DD13 / S700) since Dec 2022
 - S420 & CP800 will be available in Q2/2023
 - S315 & S500 planned for Q4/2023

Design and validation of MTH ideas with the OEM begins NOW!

FOR MORE INFORMATION

Markus Zoernack Mubea Tailor Rolled Blanks markus.zoernack@mubea.com Torben Wilks Mubea Tailor Rolled Blanks torben.wilks@mubea.com