GREAT DESIGNS IN STEEL

STAMPING TOOLING OPTIMIZATION
STO P# 10.2: DIE WEAR TESTING – PHASE II
3RD GEN 1180 GI & EG MATERIAL

J.P. Singh
General Motors
Global Stamping - Technical Integration Engineer (Steel)
PROJECT TEAM MEMBERS

JPC Project Mentor: J.P. Singh, General Motors
Project Leader: D.J. Zhou, Stellantis
Project Manager: Michael White, A/SP

Project Team Members:

- Adam Groseclose, General Motors
- Ante Lausic, General Motors
- Jacek Glowacki, General Motors
- Jeffrey Powell, General Motors
- Ohyoung Choi, General Motors
- Patrick Ricchi, General Motors
- Paul Wolcott, General Motors
- Peter Clifton, General Motors
- Scott Holden, General Motors
- Shawn Schaffert, General Motors
- Dean Kanelos, Nucor
- Arnie Newsome, Nucor
- Jiwoong Ha, Posco America
- Philippa Chiu, Stellantis
PROJECT GOALS

• Project Goals:
 o To obtain new knowledge by comparing/calibration test results with die wear simulated sliding energy calculations
 o Relationship of die wear to sliding energy density of 3rd Gen AHSS stampings

• Project Objective / Problem Statement:
 o Utilize the newly developed die wear sliding tabletop tester to do a series of experimental test on 3rd Gen AHSS of GI and EG coated sheet steels in order to help improve forming die material, surface treatments, lubricant and coating
 o Lack of understanding of the behaviors of sliding wear of 3rd Gen AHSS sheet steels with GI and EG coatings with forming die surface of various materials, surface treatments, lubricant and coating
PROJECT APPROACH

• Perform the following tasks by conducting a series of friction/wear test as follows:
 o Run the test for each case with ASP provided pin and lube
 o Examine (optical) any wear and/or surface build-up on the pin
 o Examine (optical) any damage on either the sheet and/or the pin
 o Collect friction data and evaluate integrated sliding energy for each test case

• Participants:
 o University of Windsor (Prof Nie and team - principal investigator and conduct testing)
 o Microfixtures (build and machine die wear pins)
 o Sun Steel (heat treater)
 o Ionbond (coater)
SLIDING WEAR TEST

Force: 200N
Wear Track Length: 100mm
Speed: 100mm/s,
Line Spacing: 3mm

P#10.2 related:

Sheet Materials: CR1000Y1180T-RA-SE-GI, CR850Y1180T-DP-EG
Tool material: Caldie Steel Ball, Hardened HRC 60, 15mm dia
Tool heat treatment/coating: Nitriding; Nitriding+PVD C90

DEMO
PROJECT RESULTS (WEAR TESTED SHEET SAMPLES)

GI against Pin A (Nitriding + PVD)

GI against Pin B (Nitriding)
PROJECT RESULTS (WEAR TESTED SHEET SAMPLES)

EG against Pin C (Nitriding + PVD)

EG against Pin D (Nitriding)
PROJECT RESULTS (WEAR TESTED SHEET – PIN A)

Pin A test #1 (1st steel plate)

Pin A test #11 (3rd steel plate)

Pin A test #20 (5th steel plate)

Pin A (Nitriding + PVD) vs GI coated sheet steel
PROJECT RESULTS (WEAR TESTED SHEET – PIN B B)

Pin B test #1 (1st steel plate)
Pin B test #11 (3rd steel plate)
Pin B test #20 (5th steel plate)

Pin B (Nitriding) vs GI coated sheet steel
PROJECT RESULTS (WEAR TESTED SHEET – PIN C)

Pin C test #1 (1st steel plate)
Pin C test #11 (3rd steel plate)
Pin C test #20 (5th steel plate)

Pin C (Nitriding + PVD) vs EG coated sheet steel
PROJECT RESULTS (WEAR TESTED SHEET – PIN D)

Pin D test #1 (1st steel plate)
Pin D test #11 (3rd steel plate)
Pin D test #20 (5th steel plate)

Pin D (Nitriding) vs EG coated sheet steel
PROJECT RESULTS (COMPARISON OF DIE PIN SURFACES AFTER TESTING)

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Wear Area (mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.392</td>
</tr>
<tr>
<td>B</td>
<td>1.033 (0.330)</td>
</tr>
<tr>
<td>C</td>
<td>0.252</td>
</tr>
<tr>
<td>D</td>
<td>0.916 (0.378)</td>
</tr>
</tbody>
</table>

Pin A
- PVD C90 - GI

Pin C
- PVD C90 - EG

Pin B
- Nitriding - GI

Pin D
- Nitriding - EG

- A&C PVD C90
- B&D Nitriding
- A&B GI
- C&D EG
PROJECT RESULTS (DIE MATERIAL/COATING & COEFFICIENT OF FRICTION)

Pin D (Nitriding) vs EG coated sheet steel

Pin C (Nitriding + PVD) vs EG coated sheet steel

Pin B (Nitriding) vs GI coated sheet steel

Pin A (Nitriding + PVD) vs GI coated sheet steel
Comparison

• The GI-coated metal sheet shows a slightly lower friction than the EG-coated sheets.
• The GI and EG coatings on sheets with the lubricant oils significantly reduced coefficient friction, compared with G3 uncoated sheets.
Pin Wear Area = 1.512 mm² (0.789 mm²)

Comparison with STO 10.1 result
Lot #175 3rd Gen 1180 uncoated sheets
(DIMENSIONS: 300mm (T) x 500mm (R) x 1.6mm)
Die material = bar stock Caldie
Die surface treatments = Q+T+Nitriding
Lube conditions = 1g/sm
Comparison

The GI-coated metal sheet leads to lower sliding energy than the EG-coated sheet when against Nitrided pins. The GI and EG coatings with lubricant oils, on sheet metals can significantly reduce sliding energy, compared with AHSS uncoated material.

<table>
<thead>
<tr>
<th>Sheet Materials</th>
<th>Pin treatment - Nitriding</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR1000Y1180T-RA-SE-GI</td>
<td>Pin B</td>
</tr>
<tr>
<td>CR825Y1180T-DP-EG</td>
<td>Pin D</td>
</tr>
<tr>
<td>Gen 3 1180 (STO 10.1)</td>
<td>Pin C of STO 10.1</td>
</tr>
</tbody>
</table>
PROJECT CONCLUSIONS AND RECOMMENDATIONS

- The sheet steels with GI coating (CR1000Y1180T-RA-SE-GI) showed a lower coefficient of friction and associated sliding energy than those with EG coating (CR825Y1180T-DP-EG).

- The GI and EG zinc coatings on sheets with the lubricant oils can significantly reduce coefficient of friction and sliding energy as compared with comparable strength uncoated steels.

- The sliding energy was similar for both PVD C90 coated and nitrided pins against GI coated sheet steel (CR1000Y1180T-RA-SE-GI) while the energy was higher for the nitrided pin than for the PVD C90 pin when compared against CR825Y1180T-DP-EG sheet.

- The wear marks on pins sliding on similarly coated steels were found to be comparable.

- Some of the GI and EG coatings were found to have transferred from the sheets onto both the PVD C90-coated pins (Pins A and C) and nitrided pins (Pins B and D).

Good die heat treatment and coatings are necessary to drive acceptable die surface conditions, frictional behavior and resulting stamping performance, which zinc coatings aid further, to help improve part quality for high volume production of 3rd Gen ultra high strength steels.
PROS AND CONS

Advantages:
This test more closely represents the contact and sliding condition in the real stamping production

Disadvantages:
Limited sliding distance in the test
NEXT STEPS

Preform additional production related sliding wear tests with OEM selected combination of UHSS sheet, die materials and surface treatments are planned in STO 10.3 phase.
FOR MORE INFORMATION

Visit: www.a-sp.org

Contacts:
 JP Singh, Team Mentor
 248.842.8532
 jatinder.p.singh@gm.com

 Michael White, Project Manager
 313.378.8958
 mwhite@a-sp.org

More Questions? Meet the speaker(s) the Auto/Steel Partnership booth.