GREAT DESIGNS IN

STRAIN AND BAKE PROPERTIES OF UHSS PROPOSAL FOR A NEW TEST PROCEDURE

Haea Lee

POSCO

On Behalf of Auto/Steel Partnership

PROJECT TEAM MEMBERS

Steel Testing & Harmonization Team

Project Mentor: Dean Kanelos, Nucor Steel Project Leads: Jugraj Singh, Stellantis and Derek Bross, Nucor Steel Project Manager: Jonathan Smith, Auto/Steel Partnership

Project Team Members:

- D. Baker, General Motors
- M. Galant, General Motors
- J. Ha, POSCO America
- J. Herrera, TERNIUM
- R. Johnson, Stellantis
- E. McCarty, Auto/Steel Partnership
- E. Rodriguez, TERNIUM
- Dj Zhou, Stellantis

BACKGROUND

- After pre-straining & baking, most automotive steels show hardening behavior
- Normally, as the pre-strain increases, the BH effect also increases
- This can be a strong point of AHSS, especially for the crash-resistant parts

STANDARD FOR BHI EVALUATION

Standard	ASTM A653/A653M	BS EN 10325:2006
Specimen	ASTM E8/E8M	BS EN 10002-1:2001
Loading Dir.	Rolling Dir.	Transverse Dir.
Test Methods	ASTM A370	BS EN 10002-1:2001
Pre-strain	2 % engineering pre-strain	2 % platic(permanent) pre-strain
Baking Conditions	170°C for a period of 20 min.	170°C for a period of 20 min. (\pm 0.5 min)
Cooling Conditions		Air cooling to room temp. (23 \pm 5 °C)
Cross sectional area after BH	The original test specimen cross section	The plastic pre-strained specimen cross section
Modulus of elasticity	///////////////////////////////////////	200 GPa
Bake hardening index	BHI = B - A	$BH_2 = R_{eL,t} (or R_{p0.2,t}) - R_{p2,r}$

X Notation

BHI : Bake hardening index

A : Flow stress at 2 % extension under load

B: Yield strength [upper yield strength (BU) or lower yield stress (BL)] after baking at 340°F [170°C] for 20 minutes

 $R_{p2,r}$ [MPa] : Stress corresponding to a 2 % platic prestrain measured on the test piece

 $R_{eL,t}^{F-r}$ [MPa] : Lower yield strength neasured on the test piece initially prestrained at 2 % end then heat treated

 $R_{p0.2,t}$ [MPa] : 0.2 % proof strength measured on the test piece initially prestrained at 2 % and then heat treated BH_2 [MPa] : Bake-Hardening-Index

STANDARD FOR BHI EVALUATION

Bake Hardening Index

[ASTM A653] Representation of Bake Hardening Index (BHI)

[BS EN 10325:2006] Illustration of the determination of BH₂

- High TS, low EL materials \rightarrow unable to get BHI w/ large pre-strain condition
- Failure occurs outside of the gauge section due to a lack of remaining elongation
- Depending on the part design, large strains (5%~) are distributed after forming
- → Need improved test procedure for large pre-strain cases to evaluate the BH effect

• High TS w/ large pre-strain \rightarrow BH effect + low ductility \rightarrow strain can not be propagated to the gauge section \rightarrow failure occurs outside the gauge section

e.g. 1500 Mart case

Strain flow during tensile test

• Normal case

after hardening by BH, it progresses to phase 4

 \rightarrow failure occurs in the gauge section

High TS w/ large pre-strain case high BH effect + low ductility

 \rightarrow strain does not propagate to the gauge section

 \rightarrow failure occurs near the shoulder area

[590DP AR]

Hardness Distribution: 1180Gen3 1.0t case

9

PROPOSAL FOR NEW TEST PROCEDURE

GDIS

- As-Is: pre-strain \rightarrow BH treatment \rightarrow re-tension
- To-Be: pre-strain large specimen (e.g. KS-1B) → fabricate target specimen (e.g. ASTM E8) from the gauge section → bake treatment → re-tension
 - Pre-strain is uniformly distributed in the target specimen → abnormal failure (due to the non-uniform strain field) can be avoided

[Pre-straining]

[Re-tension]

PROPOSAL FOR NEW TEST PROCEDURE

 \mathcal{E}

Calculation of Initial Width

The final specimen was machined from the pre-strained specimen \rightarrow initial width of the final specimen should be calculated

[Before pre-strain]

1) Using width change ratio – Simple!

% Initial width of ASTM specimen w_0

$$\frac{W_1}{W_0} = \frac{w_1}{w_0} \to w_0 = w_1 \times \frac{W_0}{W_1}$$

: Initial area of ASTM specimen :

$$A_{initial_ASTM} = W_0 \times t_0 = (W_1 \times \frac{W_0}{W_1}) \times t_0$$

2) Using volumetric plastic strain condition

$$\begin{aligned} t_{l}^{p} &= \varepsilon_{w}^{p} + \varepsilon_{t}^{p} = 0\\ \varepsilon_{w}^{p} &= -\varepsilon_{l}^{p} - \varepsilon_{t}^{p} = -\varepsilon_{l} + \varepsilon_{l}^{e} - \varepsilon_{t}^{p} = -\varepsilon_{l} + \frac{S(1+e_{l})}{E} - \ln\left(\frac{t_{1}}{t_{0}}\right) = \ln\left(\frac{w_{1}}{w_{0}}\right)\\ w_{0} &= \frac{w_{1}}{e^{-\varepsilon_{l} + \varepsilon_{l}^{p} - \varepsilon_{t}^{p}}} = \frac{w_{1}}{e^{-\varepsilon_{l} + \frac{S(1+e_{l})}{E} - \ln\left(\frac{t_{1}}{t_{0}}\right)}} \end{aligned}$$

where, $w_0 = \text{initial width of ASTM specimen}$ $W_0 = \text{width of big specimen}$ $t_0 = \text{initial thickness}$ $w_1 = \text{width of ASTM specimen after pre-strain}$ $W_1 = \text{width of big specimen after pre-strain}$

ed specimen

PROPOSAL FOR NEW TEST PROCEDURE

Present Procedure (ASTM) vs. New Procedure e.g. GA 1180Gen3 (EL ~15%)

GA1180TRIP 1.6t (RD) - AR BH0 BH2 BH5 BH8 **BH10** 0.09 0.12 0.15 0.18 Eng. Strain [New Procedure]

BH effect can be evaluated w/ large pre-strain

VALIDATION OF NEW TEST PROCEDURE

Cross-validation using low TS, high EL material (CR590DP 1.4t)

VALIDATION OF NEW TEST PROCEDURE

BHI comparison: Present Procedure vs. New Procedure

The error of BHI mean value is less than 5% (ASTM standard vs. New procedure)

		ASTM Standard	New Procedure
BH2	1	33	35.8
	2	34.3	34.7
	3	36.1	34.3
	mean	34.5 (±1.3)	34.9 (±0.6)
BH5	1	18.1	17.7
	2	19	18.2
	3	18.5	17.3
	mean	18.5 (±0.4)	17.7 (±0.4)
BH8	1	12.6	12.4
	2	12.4	11.9
	3	11.2	10.4
	mean	12.1 (±0.6)	11.5 (±0.9)
BH10	1	9.6	8.0
	2	8.9	10.1
	3	8.3	7.8
	mean	8.9 (±0.5)	8.6 (±1.0)
			(unit · MPa

TEST RESULTS OF VARIOUS MATERIALS

GDIS

Test results of 590~1180 grade steels by the new test procedure BHI can be determined for large pre-strain conditions compared to the present standard

15

SUMMARY

GDIS

- An improved test method was suggested and validated to evaluate the BH effect of material with large pre-strain
- The new test method enables to obtain more accurate BH properties in large pre-strain conditions compared to the current test standard
- It is especially effective for AHSS because it makes to avoid abnormal failure after the pre-straining & bake hardening
- The accurate BH properties obtained by this procedure allow considering the forming history and baking effect in crash simulation
- Ultimately, it will be possible to design and simulate considering the final properties of each part

Pick up a copy of the draft test procedure at the Auto/Steel Partnership booth.

DISCUSSION

GDIS

Calculation of true stress-strain curve (DIC Inverse method, POSCO)

DISCUSSION

Even if the new procedure is applied, it is difficult to evaluate the BHI w/ pre-strain for some high TS, and low EL materials

- lack of remaining elongation margin after the pre-strain
- e.g. 1180Gen3 w/ large pre-strain, 1500Mart cases

→ Using DIC inverse method, eng. s-s curves can be calculated from true s-s curves

INSIGHTS & TAKEAWAYS

The new test method can be the basis of simulations considering real-part properties

19

FOR MORE INFORMATION

Haea Lee POSCO haealee@posco.com Jiwoong Ha POSCO <u>jiwoong.ha@posco.net</u>

Daniel Baker General Motors Company <u>dan.baker@gm.com</u> Jugraj Singh Stellantis jugraj.singh@stellantis.com

Jonathan Smith Auto/Steel Partnership jsmith@steel.org

More Questions? Meet the speaker(s) at the Auto/Steel Partnership booth.

