GREAT DESIGNS IN

CFPHS COMPONENT COMPARISON: 3-POINT BEND TESTING RESULTS

Presented by: Sarah Tedesco

Sr. Materials Engineer, Body Structures and Closures Group

General Motors

Contributing Authors: Jeff Wang, Zhou Wang, Ming Shi, Jiachen Peng, Zhen Chen

OVERVIEW

- Overview of CFPHS material properties
- Prior component bending results
- Production of components from Nucor 1.9mm CFPHS
- Door beam Nucor CFPHS vs AISi 22MnB5 testing parameters
- Results comparison and discussion
- Conclusion

CFPHS- COATING FREE PHS

- Coating Free PHS (CFPHS) was designed to eliminate the need for AISi coating, improve surface condition and improve part performance.
- CFPHS creates a thin stable oxide layer in the furnace that eliminates the need for shot blasting on bare steel.
- CFPHS shows superior performance in mechanical properties in both tensile and 3-point bend tests.

Mechanical Properties: CFPHS vs AlSi 22MnB5 (1500MPa) and AlSi 1800MPa PHS

coated PHS 1800 MPa.

CFPHS- COATING FREE PHS

- CFPHS microstructure is the key to the improved mechanical performance over 22MnB5.
- Retained austenite in the microstructure allows for a TRIP effect, increasing the toughness of the material.
- Martensitic microstructure can be obtained via air cooling, allowing for more robust die design.
- CFPHS uses Cr and Si additions to form the stable oxide layer and increase hardenability of the material.

Retained Austenite in Green, Martensite in Red

Microstructure Post Air Cooling

Material	с	Mn	Cr+Si +Mo	Nb+Ti	В	Bal.
22MnB5	0.19~ 0.25	≤1.4	≤1.0	≤0.12	0.0008- 0.005	Fe
Coating free PHS	0.19~ 0.25	≤1.4	≤4.0	≤0.12	None	Fe

Coating Free PHS, oxide layer in red

Ph 1 = 90.0

5um

Pa 2 = 323.3 nm

Pb 2 = 90.0 °

GDIS

PRIOR WORK: BUMPER BEAM 3-POINT BENDING

- CFPHS material vs AlSi 22MnB5 bumper beams.
- Loading rate: 15 mm/min.
- Distance between supports: 550 mm
- Both materials baked at 170 °C/20 min.
- New CFPHS has ~20% higher energy absorption than AlSi 22MnB5. Calculated via integration of force vs. displacement curve up to the peak force.

MANUFACTURE OF DOOR BEAMS

- Service program die was chosen for manufacturing door beams as the program is in service parts stage.
- Gestamp in Mason, MI produced door beams for this study on a roller hearth furnace line.
- Material used:
 - 1.9mm Nucor coating free PHS,
 - 1.9mm AISi 22MnB5
- Performed on oldest line in plant
- Furnace with N2 gas atmosphere

DOOR BEAM DIMENSIONS

GDIS

• Similar dimension tolerance between CFPHS and AlSi Door Beams

3 POINT BENDING OF DOOR BEAMS

Supports

- 3-point bending was performed at GM's China Science Lab on the Instron machine with no fixturing at the ends.
- 5 samples of each door beam were tested.
- Punch radius: 152.4 mm
- Support radius: 25.4 mm
- Supporter distance: 350 mm
- Displacement rate: 15 mm/min.

RESULTS: SERVICE DOOR BEAM ALSI VS CFPHS

Results were averaged across 5 tests for each material, averaged results are shown in chart.

	Max load (kN)		Disp. (mm)	
Production	31.7 ± 0.6		19.2 ± 0.4	
Nucor	35.1 ± 0.9		18.5 ± 0.4	
kJ Absorpti 60mm	on 0-	Increase (%)		
Productio	on	-		
CFPHS		13.1%		
kJ Absorptio max mm at ma	on 0- ax load	Increase (%)		
Productio	n	-		
CFPHS		8.9%		

CONCLUSION

- Initial results from bumper beam trial showed ~20% improvement in energy absorption of CFPHS material vs bare 22MnB5.
- Results of service door beam trials between CFPHS and AlSi 22MnB5 show an increase of ~13% energy absorption to 60mm and ~9% energy absorption to end.
- Both material suppliers and applications results showed increased energy absorption.
- CFPHS shows good potential for material mass reduction in both applications as the same performance can be obtained with lighter gauge.
- FUTURE WORK:
 - Material card validation using door beam test results
 - Hot blow form tube trials
 - TWB AISi to CFPHS
 - Feasibility study for A Pillar drop in application

THANK YOU FOR YOUR ATTENTION!

FOR MORE INFORMATION

GDIS

Sarah Tedesco General Motors <u>Sarah.Tedesco@gm.com</u>

> Special thanks to Nucor and the Gestamp Mason team for their assistance. The project would not have been possible without their services.