GREAT DESIGNS IN

ON TRUE FRACTURE STRAIN (TFS) OF AHSS SHEETS: MEASUREMENT AND DERIVATION

Jun Hu, PhD

Cleveland-Cliffs Inc.

ACKNOWLEDGEMENT

The presenter wishes to acknowledge Grant Thomas, Cynthia

Campbell, Kavesary Raghavan, and many others for their

effort and input on this and/or preceding work. The support of

Cleveland-Cliffs Inc. management for this study is also greatly

appreciated.

FROM TE VS. UTS ..

GDIS

3

... TO TFS VS. UE

TFS FOR MAT. SELECTION & COMPARISON

TFS FOR MODELING & SIMULATION

GDIS

<u>GISSMO</u>: Generalized Incremental Stress-State dependent damage Model in LS-DYNA®</u>

REMARKS & SCOPE OF WORK

TFS for material selection & comparison

- Forming performance
- Uniaxial tension test results mainly
- Represented by: A_f , ε_{1f} , ε_{tf} , $\overline{\varepsilon_f}$

TFS for modeling & simulation

- Forming + crash performance
- Various stress states: shear, tensile, plane strain, & equi-bixial
- Represented by: $\overline{\varepsilon_f}^p (\approx \overline{\varepsilon_f} \text{ for steels})$

How to measure-derive TFS?

- On uniaxial tensile test samples
- On other stress states samples

GDIS

TARGET MATERIALS

GI-Q&P980 vs. GI-DP980LCE

- Nominal thickness: 1.2 mm
- UTS × TE (GPa·%): ~20 vs. ~10 (Gen3 vs. Gen1)
- UE (L/D/T, %): ~19/18/18 vs.
 ~6/5/4
- TE (L/D/T, %): ~25/23/23 vs.
 ~11/10/8

Conclusion 1:

'Formability': Q&P980 > DP980LCE

TFS FROM DIC: OVERVIEW

$$\bar{\varepsilon}(\mathrm{vM}) \approx \sqrt{\frac{2}{3}(\varepsilon_1^2 + \varepsilon_2^2 + \varepsilon_t^2)}$$

10

GDIS

TFS FROM DIC: RESULTS

12 longitudinal ASTM-E8 tensile samples of each grade were tested at 0.001/s at room temperature

<u>Conclusion 2</u>: 'Formability': Q&P980 ≈ DP980LCE

TFS FROM DIC: EFFECTS OF FRAME RATE

The DIC-based TFS result is based on the last image before fracture

DIC frame rates: Sample 1-3, 1 Hz; Sample 4-6, 10 Hz; Sample 7-9, 100 Hz; Sample 10-12, 500 Hz

*Some steels exhibit pronounced sensitivity

TFS FROM FRACTURE AREA (FA) OPTICAL

d 114b.jpg (50%) 608:758.phels ECB 14

Necking

Area of polygon fit (Optical (A)):

$$\overline{\varepsilon}(\mathrm{vM}) \approx \varepsilon_{1f} = \int_{l_o}^{l_f} \frac{dl}{l} = \ln\left(\frac{l_f}{l_o}\right) = \ln\left(\frac{A_o}{A_f}\right) = \ln\left(\frac{w_o}{w_f}\right)$$

TFS FROM FA-OPTICAL: RESULTS

GDIS

Without parabolic approximation, the Optical (A) results are comparatively more accurate

<u>Conclusion 3</u>: 'Formability': Q&P980 < DP980LCE

DIC VS. FA-OPTICAL RESULTS

GDIS

FA-Optical Results

۰

DISCREPANCY ANALYSIS: THINNING

DISCREPANCY ANALYSIS: FRAC. SURFACE

GDIS

16

DISCREPANCY ANALYSIS: VOIDS

DISCREPANCY ANALYSIS: REMARKS

- The volume constancy assumption is mainly responsible for the discrepancy and deviation.
- Either the DIC method or the FA-optical measurement is based on and affected by the volume constancy assumption. Yet the impact on the FAoptical results is comparatively less.
- The deviation induced by the volume constancy assumption is materialdependent.
- An alternative method should avoid such an assumption.

ALTERNATIVE: HYBRID METHOD

Use the DIC results (ϵ_1 , ϵ_2) + measured thickness strain (ϵ_t) to derive the effective strain ($\overline{\epsilon}$) at fracture \rightarrow avoid the volume constancy assumption

*Limitation: synchronization deviation

DIC VS. FA-OPTICAL VS. HYBRID

comparison

simulation

DIC VS. HYBRID: FRACTURE LOCI

21

CONCLUSIONS

- TFS (fracture resistance) \neq UE/FLC (necking resistance)
- A material can exhibit high TFS and low UE/FLC, or vice versa.
- TFS measurement-derivation is not straightforward.
- The TFS from the default DIC method is questionable due to the volume constancy assumption and may underestimate the local formability of some materials.
- The TFS from the fracture area optical measurement is good enough for material selection & comparison. The results can already reveal the goodness of the local formability, despite some inaccuracy.
- As an alternative, a hybrid method is proposed mainly for fracture modeling and simulation, though the synchronization issue still affects the accuracy.

FOR MORE INFORMATION

GDIS

Jun Hu, PhD Cleveland-Cliffs Inc.

Jun.Hu@clevelandcliffs.com

Grant Thomas, PhD Cleveland-Cliffs Inc.

Grant.Thomas@clevelandcliffs.com

Cynthia Campbell

Cleveland-Cliffs Inc.

Cynthia.Campbell@clevelandcliffs.com

2022-01-0237 Published 29 Mar 2022

True Fracture Strain Measurement and Derivation for Advanced High-Strength Steel Sheets

Jun Hu, Grant Thomas, and Cynthia Campbell Cleveland-Cliffs Steel Corporation

Citation: Hu, J., Thomas, G., and Campbell, C., "True Fracture Strain Measurement and Derivation for Advanced High-Strength Steel Sheets," SAE Technical Paper 2022-01-0237, 2022, doi:10.4271/2022-01-0237.

2022 SAE/AISI Sydney H. Melbourne Award