GREAT DESIGNS IN

MECHANICAL FASTENING SOLUTIONS FOR BATTERY TRAYS

Eric Weber

Penn Engineering – New Product Development – PROFIL – North America In collaboration with Dr. Amer Mahlme – New Product Development - Germany

AGENDA

A LOOK THROUGH THE 3 GENERATIONS OF EV ARCHITECTURE

GENERATION 1 – SKATEBOARD

- Battery Tray underneath body frame
- Previous generation, still utilized

GENERATION 2 – STRUCTURALLY INTEGRATED

- Battery Tray integrated structurally with body frame
- Current Generation

Audi e-tron GT Integration of the high-voltage battery in the body structure 02/21

GENERATION 3 – VEHICLE INTEGRATED

- Improvements in battery range/charging efficiency
 - Batteries infiltrating more spaces in a vehicle (i.e., Doors)
- Concern for occupant safety
 - Batteries becoming more structural
- Consideration for recycling of battery trays
- Material trends:
 - More optimization of cost
 - Increased use of high-strength steels
 - Lightweighting of components to continue
 - Increased use of alternative materials (aluminum, magnesium)
- Increased use in mechanically attached fasteners

FASTENING CHALLENGES

- Material Applications
 - New materials being introduced
 - Thinner Materials expected
- Ingress Protection
 - Requirements for ingress protection not fully being realized
 - Testing on a component level versus assembly level
- Application access
 - Long extrusions being used
 - Closed Access
- Load Bearing Capabilities
- Electrical conductivity

GDIS

MECHANICALLY ATTACHED FASTENING

PENN ENGINEERING AND PROFIL

PennEngineering®

Global Leaders in Mechanically Attached Fasteners

THE PENN ENGINEERING ADVANTAGE

Technical Advisory and OEM and Tier Global field engineering and direct sales engineers

Manufacturing Global manufacturing capabilities in local markets Application Engineering Support Global application engineering experts and full test lab capabilities

After Sales Technical Support Full, ongoing technical support and on-site training as required

RIVETING

CLINCHING

SELF-PIERCING NUT

Link to video: https://www.profil-global.com/products/mhn/

14

SELF-PIERCE STUD

GDIS

WATER INGRESS PROTECTION

INGRESS PROTECTION

- Based on ISO 20653
 - IP67 Temporarily submerged in water (30 minutes)
 - IP69K Protection against highpressure/steam jet cleaning
- Current process:
 - Submerge assembly in a large water bath
 - Wait 30 minutes and look for bubbles
 - Disassemble tested assembly
 - Look for water

 This process is quantifiable through counting bubbles expelled by the battery pack

CLARIFICATION OF FAILURE

Failure

INGRESS PROTECTION

- Internally developed standard for leak testing MAF
- Developed with industry partner Inficon
- Quantifies leak resistance through vacuum method referencing Helium gas
- Available for industry use, please contact us

INGRESS PROTECTION

- Vacuum method referencing helium
 - Connect helium detector to outgoing port
 - Engage vacuum
 - Provide Helium to leak area
 - Read test value

Correlation between IP67 and IP69k and panel substrate:

	IP67	IP69k			
Steel	≈ 5·10 ⁻³ mbar·l/s	≈ 1·10 ⁻³ mbar·l/s			
Aluminum	≈ 5·10 ⁻⁵ mbar·l/s	≈ 1·10 ⁻⁵ mbar·l/s			

Meaning of leakage rates, $\Delta p=1$ bar:

Request	mbar·l/s	cm³/s	cm³/min	l/min	l/h	ml/min	sccm	Description
	10-0	10-0	6·10 ¹	6·10 ⁻²	3.6·10 ⁰	6·10 ¹	6·10 ¹	Water tap drips
	10-1	10-1	6·10 ⁰	6·10 ⁻³	3.6.10-1	6·10 ⁰	6·10 ⁰	1 cm ³ gas loss in 10 s
Watertight	10-2	10-2	6·10 ⁻¹	6.10-4	3.6.10-2	6·10 ⁻¹	6·10 ⁻¹	Water tap does not drip
Oil-tight	10 ⁻³	10 ⁻³	6·10 ⁻²	6·10⁻⁵	3.6·10 ⁻³	6·10 ⁻²	6·10 ⁻²	<1 bubbles per second
Bacteria Proof	10-4	10-4	6·10 ⁻³	6·10 ⁻⁶	3.6.10-4	6·10 ⁻³	6·10 ⁻³	1 cm ³ gas loss in 160 min
Gasoline Proof	10-5	10-5	6·10 ⁻⁴	6·10 ⁻⁷	3.6·10 ⁻⁵	6·10 ⁻⁴	6·10 ⁻⁴	1 cm ³ gas loss in 26 h
Gas Tight	10-6	10-6	6·10⁻⁵	6·10 ⁻⁸	3.6.10-6	6·10 ⁻⁵	6·10 ⁻⁵	1 cm ³ gas loss in 12 days

<complex-block>

Demonstrations at our booth or appointment!

INGRESS PROTECTION FASTENERS

RND Cap Nut No special seals required

EBF - Watertight Clinch Stud

GDIS

PRESS HARDENED STEEL

PRESS HARDENED STEELS

PRESS HARDENED STEELS - DIRECT

Steel is softest during forming stage and can easily self pierce

Fastener temperature elevates but does not temper due to cooling

PRESS HARDENED STEELS - DIRECT

PROFI

PRESS HARDENED STEELS - DIRECT

SBF

SMP

PRESS HARDENED STEELS

PRESS HARDENED STEELS - INDIRECT

Fastener to be installed during quenching phase or through secondary process Process not limited to fastener

PRESS HARDENED STEELS - INDIRECT

Fastener to be installed during quenching phase or through secondary process Process not limited to fastener

PRESS HARDENED STEELS - INDIRECT

Specialized Fasteners designed

RND-S

Square RSE

GDIS

FASTENERS IN CLOSED SECTIONS

FASTENERS IN CLOSED SECTIONS

GDIS

KEY TAKEAWAYS

GDIS

KEY TAKEAWAYS

- EV architecture is evolving needing solutions from fasteners
- Mechanically attached fasteners are highly tailored solutions to many fastening problems
- Water ingress protection is possible through mechanically attached fasteners
- Attachment to a wide variety of materials is possible
- Applications in less accessible areas is possible, working with customers is key
- Development of Special Fasteners for Electrical Conductivity aids in application design

FOR MORE INFORMATION

GDIS

Presenter Eric Weber Penn Engineering / PROFIL <u>eweber@pemnet.com</u>

Collaborator Dr. Amer Mahlme Penn Engineering / PROFIL <u>Amer.Mahlme@profil.eu</u>

