GREAT DESIGNS IN STEEL S

EV STRUCTURE - LIGHTWEIGHT COMBO MADE OF OLPB DOOR RING & WAVE ROCKER

Dean Bartolomucci

Gestamp - Product Engineering Manager

GDIS

GLOBAL FOOTPRINT/R&D CENTERS

EV PRODUCT FAMILY EXTREME SIZE PARTS

EXTREME SIZE PRODUCTS

- 1. ONE PIECE DOOR RING
- 2. ONE PIECE FLOOR
- 3. RING FRAME
- 4. ONE PIECE REAR FRAME
- 5. ONE PIECE DASHBOARD
- 6. ROOF RING
- 7. ROCKER REINFORCEMENT
- 8. FRONT RAIL SYSTEM

ADVANTAGES

GIGA STAMPING

- Integration of functions
 cost / performance / CO2 reduction
 Improved quality vs big assemblies

ASSEMBLY LINE AT OEM

- Reduction of complexityLess floor space

PERFORMANCE

- Optimum Crash & NVH performance.
 PHS hardened with ductile grades.
 Use of 2Gpa new PH grades.

POST TREATMENTS

• Laser Heat treatments to improve energy management performance and mechanical assembly options.

PRODUCTION DOOR RINGS

Dodge RAM

2018

SUV

2021

US OEM TWB

C Segment

2022

1 DR TWB – Japanese OEM 1 DR TWB – UK OEM 1 DR Overlap Patch - US OEM 1 DR Overlap Patch – US OEM

1 DR Overlap Patch – German OEM

Million/year

~3.5

GDIS

DOOR RING: FROM TWB TO OVERLAP

Key idea: Replace TWB process by simple RSW blank welding thanks to overlap the blanks

TWB SOLUTION

GESTAMP OVERLAP PATCH SOLUTION

Laser welding of

blanks

Final

product

Overlap Joints are developed to structural requirements

Ablation needed Laser welding blanks Complex welding process

Blank entrance

No Ablation Needed In-house Spot Welding Easy blank welding adjustment

10-15% Part Price reduction vs Multi Piece

GDIS

BENEFITS OF OLPB DOOR RING

PRODUCT PERFORMANCE GOALS

- Overlapping Material Where Required

 Best Crash performance and local / Global

 Stiffness. Glove Fit, no gaps, structural joints
- Part Integration (with Patches)
 Patch Solution (great weld integrity, no HAZ)
 Integrated Reinforcements (e.g. Hinge Reinf.)
- 3 Right Material In The Right Place
 Ductile Material Use To Prevent Failure Risk
- 4 Savings vs Multi-Piece Design
 Complexity Reduction (~300 less OEM welds)
 Reduction of material (addendum) and Tooling
 Improved dimensional quality
 0 10% mass and 10 15% CO₂ reduction

DOOR RINGS NOW WITH PROPRIETARY OVERLAP TECHNOLOGY

GDIS

GIGA STAMPINGT - OVERLAP PATCH DOOR RING

PATCH OVERLAP BLANKING WELDING PROCESS DESCRIPTION

DOOR RINGS NOW WITH PROPRIETARY OVERLAP TECHNOLOGY

GDIS

GIGA STAMPINGM - OVERLAP PATCH DOOR RING

WAVE ROCKER

ROCKER REINFORCEMENT

CHALLENGES

OEM Requirements

- Battery & occupant protection
- High energy absorption
- Cost & weight optimisation

SPECIFIC PRODUCT FOR EV ARCHITECTURES

ROCKER REINFORCEMENT FAMILY

SPECIFIC PRODUCT FOR EV ARCHITECTURES

BENEFITS

OEM

- Architecture and material options
- Need to use specific materials
- Co-development of rocker concepts

Gestamp 6

- Family of energy mgt. solutions
- Aluminium and Steel alternatives
- New ductile PHS material grades

PH ROCKER ELIMINATING THE HIGH COST AL EXTRUSION

GDIS

HIGHLY ENGINEERED PRODUCT-ROCKER REINFORCEMENT

Alternative to Aluminium extrusions:

- Same level of Energy absorption
- Stamped in E-Coat drainage channels
- Mass neutral potential
- Full battery protection in any given pole position

Savings:

- 20 30% Part Price reduction vs aluminum extrusion
- 0%-5% weight reduction vs aluminium
- Avoid adhesives in the assembly
- No KTL/E-Coat required
- 5% CO2 reduction

OEM Body assembly line simplification:

- No changes in joining strategy Savings in body shop
- Standard resistance spot-welding
- No KTL drainage issues (channels in parts)

Industrial facilities available:

• Existing Mfg. facilities (Hydroforming & PHS)

PROPRIETARY ROCKER STEEL SOLUTIONS FOR ALL TYPE OF BATTERIES

GDIS

HIGHLY ENGINEERED PRODUCT- ROCKER REINFORCEMENT

Flexible solution:

Customized design/materials for side crash strategy

Caterpillar PHS assembly Wave Design Single Piece Flexible Designs Wave Design Multi-grade assembly Hydroformed Caterpillar

Performance:

Equal against aluminum extrusion

SOLUTIONS FOR DIFFFERENT BATTERY TRAY STRATEGY + PASSENGER PROTECTION

EV STRATEGIC PARTS: ROCKER REINFORCEMENT

GDIS

FOR NON -STRUCTURAL BATTERY TRAY CONFIGURATION

FOR STRUCTURAL BATTERY TRAY CONFIGURATION

WAVE ROCKER: ROCKET CONCEPT -STRUCTURAL BATTERY TRAY

Key idea: Replace Aluminum extrusion with PHS Wave design

GESTAMP ROCKET REINFORCEMENT CONCEPT

- Same level of energy absorption
 Material grades wave design and Rocket shape
- Equivalent intrusion
 Battery protection for all pole positions
- Mass neutral potential
- Avoids adhesives in the assembly
- Part price reduction potential 20 30%

EV STRATEGIC PARTS: ROCKER REINFORCEMENT

BATTERY / BIW

ROCKER WAVE DESIGN FOR EV'S

ALUMINUM REFERENCE

45km/h - X1200

t = 0ms

t = 10ms

t = 12ms

t = 14ms

t = 20ms

GESTAMP PROPOSAL

45km/h - X1200

t = 0ms

EV STRATEGIC PARTS: ROCKER REINFORCEMENT

PRESS HARDENING - Steel solution

CONCEPT VALIDATION

Rocker Intrusion

WAVE ROCKER: HYDRO CONCEPT

HYDROFORMING - Steel solution

DESIGN

CONCEPT VALIDATION

Smart Hydroforming Rocker Reinforcement

MATERIAL OPTIONS:

- TRIP/DP/CP 600/800 grades
- 3rd generation steels

Maximize energy absorption and adapt to environment

Gen 3 980 1.7mm

TRIP 690 2.0mm

Forming sims courtesy of Vari-Form

Flexible spot weld location

Removal of adhesives needed in Aluminum designs

Improved KTL coverage concept with design gaps

WAVE ROCKER: HYDRO CONCEPT

HYDROFORMING - Steel solution **PROTOTYPING**

TESTING VALIDATION

WAVE ROCKER: HYDRO CONCEPT

HYDROFORMING - Steel solution **PROTOTYPING**

Hydro Prototypes: Full validation on going

TESTING VALIDATION

STATIC POLE TEST IN PROGRESS

Summary

GDIS

☐ OLPB Door Rings

- Key Benefits
 - Cost/Weight reduction vs. Multipiece
 - Cost Reduction vs. TWB One-piece
 - Part consolidation: OEM Body Shop space, complexity & dimensional
- Technology risks mitigated Validation projects complete
 - Lessons learned Design/Tooling best practices
 - Surrogate panel performance confirms functional objectives achieved
- Launching now

☐ Wave Rocker

- Key Benefits
 - Cost
 - Standard RSW joining method
 - Minimal to no change to BIW assembly
 - Existing Mfg. facilities (Hydroforming & PHS)
 - Comparable weight/performance to Aluminum

THANK YOU!