NEW STEEL TUBE DESIGN FOR BEV BATTERY ENCLOSURE PROTECTION – C-STAR™ (CLIFFS STEEL TUBE AS REINFORCEMENT)

Miao Yu
Cleveland-Cliffs Inc.
Advanced Applications Engineer
I would like to acknowledge the great contributions from our team members:

Yu-Wei Wang, Sobhan Nazari, John Markryginnis, Jimmy Zhang, Feng Zhu, Sajan George, Scott Stevens, Jun Hu, Erik Anderson, Kevin Ward, Steve Walls Jr

Issac Luther, Dawn Stubbleski (TWB Company)

Greatly appreciate the support from Cleveland-Cliffs Inc.
AGENDA

- BACKGROUND
- C-STAR™ DESIGN DETAILS
- TEST RESULTS
- CORRELATION AND C-STAR™ ADVANTAGES
- MANUFACTURABILITY
- SUMMARY AND FUTURE ACTIVITIES
Battery protection becomes more and more important.

For curb weight, BEVs (battery electric vehicle) are roughly 20% heavier than similar size of ICEs (internal combustion engine) vehicles.\(^1\)

One of the biggest challenges is to protect the battery enclosure under severe side impact load.
• Rocker reinforcement of BEVs covers more area longitudinally than ICE vehicles.
• The function of it is mainly considered as battery side load protection.
• Compared with ICE, more material distributed laterally in BEVs rocker reinforcement is beneficial for energy absorption and intrusion protection.
AGENDA

- BACKGROUND
- C-STAR™ DESIGN DETAILS
- TEST RESULTS
- CAE RESULTS AND CORRELATION
- MANUFACTURABILITY
- SUMMARY AND FUTURE ACTIVITIES
C-STAR™ DESIGN DETAILS

- Long, uniform, hollow design space is ideal for tube design.

- Chamber shapes are effective for energy absorption.

- C-STAR™ are developed and compared with aluminum baseline.

- Laser weld is used to join three tubes together with minimum HAZ (heat affected zone) and around 3x thickness penetration.

Cross section comparison of aluminum baseline and steel tube design.
AGENDA

- BACKGROUND
- C-STAR™ DESIGN DETAILS
- TEST RESULTS
- CORRELATION AND C-STAR™ ADVANTAGES
- MANUFACTURABILITY
- SUMMARY AND FUTURE ACTIVITIES
TEST SET UP

• Three-point bending is conducted to assess the performance.

• The anvil is speed controlled.

• Force-displacement data is collected and video is recorded by digital image correlation camera.

• Both peak force and energy absorption are evaluated.

Zwick Roell HTM 16020 high speed testing machine
- 0.001~20m/s loading rate
- 160kN nominal force
- Tensile, axial crush, three-point bending capability
- 300mm effective piston stroke
TEST RESULTS – 2 CHAMBERS ALUMINUM

- Aluminum part is 4.6mm thick with 6000 series grade, 2.0kg.
- Aluminum 2 chambers sample; 107kN peak force.
- Catastrophic failure after reaching peak load.
TEST RESULTS – C-STAR™

- FORMTUBE® 800 tubes, 1.2mm, 1.4kg.
- C-STAR™; 45kN peak force.
- Stable load displacement curve after peak force. The structure can still maintain high level load.
AGENDA

- BACKGROUND
- C-STAR™ DESIGN DETAILS
- TEST RESULTS
- CORRELATION AND C-STAR™ ADVANTAGES
- MANUFACTURABILITY
- SUMMARY AND FUTURE ACTIVITIES
• CAE model shows a well captured plastic deformation area.
CAE model establishes a good correlation with physical test.
C-STAR™ ADVANTAGES

Force - Energy Absorption vs Displacement

F: Force
E: Energy

ULTRALUME® 1500, 1.9mm, F
ULTRALUME® 1500, 1.7mm, E
ULTRALUME® 1500, 1.4mm, F
ULTRALUME® 1500, 1.4mm, E
C-STAR™ ADVANTAGES

<table>
<thead>
<tr>
<th></th>
<th>Weight</th>
<th>Peak Force</th>
<th>Energy equivalent point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum Baseline</td>
<td>2.0kg</td>
<td>107kN</td>
<td></td>
</tr>
<tr>
<td>C-STAR™ ULTRALUME®1500, 1.4mm</td>
<td>1.7kg (-15%)</td>
<td>87kN (-19%)</td>
<td>55mm</td>
</tr>
<tr>
<td>C-STAR™ ULTRALUME®1500, 1.7mm</td>
<td>2.0kg (+0%)</td>
<td>125kN (+17%)</td>
<td>42mm</td>
</tr>
<tr>
<td>C-STAR™ ULTRALUME®1500, 1.9mm</td>
<td>2.3kg (+15%)</td>
<td>149kN (+40%)</td>
<td>34mm</td>
</tr>
</tbody>
</table>

- With mass parity, C-STAR™ outperforms aluminum baseline around 17% peak force; more energy after 42mm deformation.
- The larger the EA zone, the greater the benefit for steel design.
AGENDA

- BACKGROUND
- C-STAR™ DESIGN DETAILS
- TEST RESULTS
- CORRELATION AND C-STAR™ ADVANTAGES
- MANUFACTURABILITY
- SUMMARY AND FUTURE ACTIVITIES
MANUFACTURABILITY – TUBE

Cleveland-Cliffs Tubular Components:

- **Makers of FORMTUBE®**
- Auto Structural/Exhaust - 60% of sales
- Widest product mix in ERW (Electric Resistance Welding) market:
 - Carbon and stainless grades
 - Galvanized, Aluminized, uncoated
 - EDDS (Extra Deep Drawing Steel) through Gen 3 AHSS (Advanced High Strength Steel)
- Un-matched ERW dimensional capability:
 - 0.8 mm minimum thickness
 - 150 mm maximum Diameter
 - 100:1 D/t capability
 - Custom shapes
- Leader in AHSS Tubular solutions
MANUFACTURABILITY – TUBE

ULTRALUME® PHS
1.6 mm thick
175 mm perimeter
35:1 D/t ratio

DP 980
1 mm thick
200 mm perimeter
65:1 D/t ratio

ULTRALUME® PHS
3 mm thick
227 mm perimeter
24:1 D/t ratio

DP 980
1 mm thick
200 mm perimeter
100:1 D/t ratio

NITRONIC 30 1200
0.8 mm thick
130 mm perimeter
50:1 D/t ratio

Capability to leverage AHSS grades for lightweighting applications
MANUFACTURABILITY – WELDING

- Welding fixture design
- Prototype Laser welding
- Penetration check (Marco)
- Welding strength check (Peel test)
Bake harden effect has a 6% improvement on peak force for this FORMTUBE® 800 tube.
AGENDA

- BACKGROUND
- C-STAR™ DESIGN DETAILS
- TEST RESULTS
- CORRELATION AND C-STAR™ ADVANTAGES
- MANUFACTURABILITY
- SUMMARY AND FUTURE ACTIVITIES
SUMMARY AND FUTURE ACTIVITIES

Summary:
- With similar mass, C-STAR™ outperforms aluminum baseline on:
 o Peak force.
 o Energy absorption at certain space.
- C-STAR™ is a sustainable, versatile and highly scalable product with cost and manufacturability efficiency.
- Being the largest flat-rolled steel company in NA, Cleveland–Cliffs provides a wide range of portfolio to meet customers' specifications.
SUMMARY AND FUTURE ACTIVITIES

Future activities:
- Investigation of different tube configurations: combinations of grade, gauge and geometry.
- Performance evaluation at sub-assembly level
- Mechanical joining methods assessment, such as bolting, riveting, etc.
- Other applications in the vehicle body structure
FOR MORE INFORMATION

Miao Yu
Cleveland-Cliffs Inc.
MIAO.YU@CLEVELANDCLIFFS.COM

Yu-Wei Wang
Cleveland-Cliffs Inc.
YU-WEI.WANG@CLEVELANDCLIFFS.COM