

Dynamic Considerations in Prediction of Fracture of Ultra High-Strength Steel During Crash

Presenter: Michael Worswick, uWaterloo

Co-Authors

A. Abedini, M. Nemcko, T. Rahmaan, N. Pathak, C. O'Keefe, C. Tolton, A. Zhumagulov,

C. Butcher, M. Worswick

uWaterloo

S. Malcolm, J. Dykeman, Honda R&D Americas

C. Yau, Promatek Research Centre

Overview

- High strain rate response of automotive alloys (tensile + shear characterization):
 - o DP980 (SMDI), DP600
 - Fully quenched Usibor® 1500-AS, Ductibor® 500-AS
- Effect of strain rate on fracture?
 - Shear conditions (zero triaxiality)
 - Positive triaxiality conditions
- Weld failure characterization "spot weld groups"

Shear Testing

^{*}J. Peirs, P. Verleysen, W. Van Paepegem, J. Degrieck, International Journal of Impact Engineering, **38**, 406-415, 2011.

- Achieves shear strains easily on the order of unity with relatively constant triaxiality of zero^{**}
- Appropriate for high rate testing in Hopkinson bar or high speed hydraulics (1-1000/s)

**Abedini, A., Butcher, C., Worswick, M.J., Journal of Experimental Mechanics, 57 (1), 75–88, 2017. #GDIS | #SteelMatters

4

Dynamic Fracture

Issue today lies in the majority of fracture characterization for crash CAE being done at quasi-static rates...

Potential sources of rate effects:

- Elevated strain rates
- Temperature increase through adiabatic heating (~90% of plastic work converted to heat) *
- Inertial effects

* Temperature increase also important for constitutive behaviour and not commonly considered in today's crash CAE...

Dynamic Fracture

#GDIS

#SteelMatters

Quasi-static loading

Effect of dynamic loading on failure strain?

6

Rate Effects – Shear (DP600)

- Rate sensitivity is initially positive, but becomes negative at large strains
- Promotes earlier localization under shear loading*

*Rahmaan, T., Abedini, A., Butcher, C., Pathak, N., Worswick, M.J., *International Journal of Impact Engineering*, **108**, 303-321, 2017.

After complete failure

After complete failure Specimen without speckle

Specimen with speckle

- Onset of shear cracking is determined as the point where the hardening rate is exhausted¹
- Repeatable and eliminates the need to detect fracture based on visible cracking²

¹Zener and Hollomon, Journal of Applied Physics, **15**, 22-32, 1944.

²Rahmaan, T., Abedini, A., Butcher, C., Pathak, N., Worswick, M.J., International Journal of Impact Engineering, **108**, 303-321, 2017.

Onset of Shear Localization

Effect of strain rate on failure strain

Position along line slice (mm)

Failure in Uniaxial Tension versus Shear – Rate Effect

In tension, positive rate sensitivity promotes higher failure strains as strain rate increases.

In shear, thermal localization reduces failure strain (as measured using DIC) with increasing strain rate.

Local Strains at Failure

#SteelMatters

 At microstructural level, gain rotation can be used to estimate the local shear strains within the shear band (gives shear angle, α)

$$\varepsilon_{eq}^{VM} = \frac{2}{\sqrt{3}}\varepsilon_1 = \frac{2}{\sqrt{3}}\sinh^{-1}(\gamma/2)$$
 $\gamma = \tan(\alpha)$

Local Strains at Failure

Sharper strain localization and higher peak strains using the grain-level strain measurement as compared to DIC measurements.

Implications for crash CAE

- Given the coarse meshes necessitated in vehicle CAE, failure strains should be measured using a length scale on the order of the element size
- DIC virtual strain gauge length: 0.3 mm) versus 3-5 mm element size
- For these materials, shear strain to failure *input to FEA decreases* with strain rate!
- Less impact on positive triaxiality regime, however, confounding results exist in the literature

#GDIS

#SteelMatters

High Speed Thermography

Ductibor® 500-AS: Shear Ductibor® 500-AS: Notched Tension (T_{peak} ~234 C) (T_{peak} ~230 C) 23.64 24.55 25.46 26.37 27.28 28.18 29.09 22.48 27.02 28.53 30.04 31.55 23.99 25.50 Temp [°C] Temp [°C]

#GDIS | #SteelMatters

Thermal Softening in Shear (Ductibor® 500-AS)

Shear Response: Martensitic Condition

Fully-quenched Usibor® 1500-AS condition – primarily martensitic Microstructure - Lower strains to

- failure
- Higher heat generation rates

Shear Response: Martensitic Condition

Thermal localization at lower strains due to higher internal work rate and low work hardening rate

Effect of strength on onset of localization

- Earlier localization, narrower thermal field for the higher strength conditions
- Thermal localization enhanced for higher strength alloys
- The strong work hardening of the DP600 is clearly beneficial

Characterization of failure in spot weld groups

- Interaction between nugget, HAZ and parent metal strength (single weld)
- Test method for weld group testing (Mode I Caiman)

MODE I DYNAMIC (1.6MM)

Honeycomb supports

\ / 400 or 700 °C die temperature in flange regions

Mode 1 Quasi-Static

#GDIS | #SteelMatters

Mode 1 Dynamic

Weld Failure Surface (1.6 mm)

Dynamic

Quasi-static

700°C

DYNAMIC THERMOGRAPHY

Softer flanges (high flange die temperature) contribute more towards energy dissipation

Mode 1 Quasi-Static

Acknowledgements

Canada Research Chairs www.chairs-chaires.gc.ca

For More Information

- Michael Worswick
- University of Waterloo
- michael.worswick@.uwaterloo.ca

Cliff Butcher University of Waterloo cbutcher@uwaterloo.ca