

SUSTAINABLE LIGHTWEIGHT BATTERY ENCLOSURE DESIGN WITH MULTIPLE AHSS STEELS

Sajan George Cleveland-Cliffs

AGENDA

- Introduction of Cleveland-Cliffs Corporation
- BEV growth outlook
- Life cycle assessment Steel vs. Aluminum
- Challenges in BEV architecture design for safety
- Is lightweighting still relevant ?
- Battery enclosure material Steel
- AHSS battery pack design
- Summary

CLEVELAND-CLIFFS

Largest flat-rolled steel producer in North America following 2020 acquisitions of AK Steel and ArcelorMittal USA

Fully integrated from raw materials to primary steelmaking to downstream stamping, tooling, and tubing

Steel market leader in automotive industry sales and quality

Track record of cost synergy achievement, commercial excellence, and disciplined approach to supply

Full commitment to ESG policies including aggressive GHG emissions reduction and inclusive capitalism

COMPANY OFFICES AND OPERATIONS

Offices

Cleveland-Cliffs Headquarters
 Regional Office – West Chester
 Regional Office – Chicago
 Regional Office – Richfield
 Research & Innovation Center

Mines and Pellet Plants

6. Hibbing Taconite (JV)7. United Taconite8. Northshore Mining9. Minorca Mine10. Tilden Mine11. Empire Mine (idled)

Steelmaking

Mansfield Works
 Butler Works
 Dearborn Works
 Middletown Works
 Ashland Works (idled)
 Burns Harbor
 Cleveland
 Coatesville
 Indiana Harbor
 Riverdale
 Steelton

Finishing Facilities

23. Rockport Works
24. Coshocton Works
25. Zanesville Works
26. Burns Harbor Plate and Gary Plate
27. Columbus (idled)
28. Conshohocken
29. Piedmont
30. Weirton
31. I/N Tek and I/N Kote

Value-Added Products

32. Toledo - HBI
33. Windsor/Ontario - Component Stamping
34. Sylacauga - Component Stamping
35. Bowling Green - Component Stamping
36. Walbridge - ERW Tubing
37. Columbus - ERW Tubing

Cokemaking and Coal Mining

38. Mountain State Carbon39. Monessen (idled)40. Princeton41. Warren

A DIFFERENTIATED, FULLY-INTEGRATED BUSINESS MODEL

DIVERSIFIED END MARKETS WITH FOCUS ON VALUE ADDED PRODUCTS

Extensive Product Offering

CLIFFS NOW HAS INFLUENCE OVER THE ENTIRE STEEL LIFE CYCLE

Cliffs' position as the most prominent automotive steel supplier in the US provides the most compelling scrap offtake proposition for the OEM

CLIFFS' COMMITMENT TO GHG REDUCTION

Scope 1 and Scope 2 Emissions

Cliffs' 25% GHG Reduction by 2030

Cleveland-Cliffs' eight operating blast furnaces are among the lower GHGintensive integrated operations in the world

LIFE CYCLE ASSESSMENT

Outcome	Aluminum (MJ)	AHSS (MJ)
Total Life Cycle Demand Per Vehicle	383,000	347,000
Total Life Cycle Demand for 1 Million	383,000,000,000	347,000,000,000

Total Energy Savings with AHSS: 36,000,000,000 MJ (10,000,000 kWh)

This means that, with the energy it would take to produce aluminum-intensive vehicles, you could manufacture, power and recycle AHSS BEVs plus have enough leftover energy to power an additional 170,000 BEVs for their entire useful lives, or supply the total energy demand to 77,000 U.S. households for 12 years (based on publicly available 2015 data)

CHALLENGES IN BEV ARCHITECTURE DESIGN FOR SAFETY

- Unique safety performance like electric safety and cabin deformation
- Mass increase about 50% for the propulsion and 25% of the curb mass compared to ICE

- New layout and structure of the front end to meet the frontal crash requirements ^{33% Heavier!}
- IIHS SORB adds additional safety requirements
 - Increased role of bumper in high speed impact
- New IIHS side impact protocol introduces 82% more energy
 - Mass increase from 1500 kg to 1900 kg speed increase (50 to 60 kmph)
 - Rocker structures are becoming more complex

DO WE NEED LIGHT WEIGHTING ?

BEV price parity with gas-powered cars by 2024

BY JOHN FARREL https://ar.org/report-electric-rehicles

носо, сестнеска рнотах токан рносе

BATTERY WEIGHT COMPARISON

DIS

Car Segments	BEV Models (SOP)	Energy Content / Battery Size (kWh)	Battery Range (mi)	Battery Weight (Lbs.)	Battery Housing NetWeight (Lbs.)	Housing Share of Total Battery Weight (%)	Energy Content per Pound of Battery	Energy Efficiency (declared)
A	Volkswagen Up! (2011) (only one A- segmentmodel in NA: JAC Refine S4)	32	160	547	ST: 97 Composite: 21	22%	58.5 Wh/Lbs.	20.3 kWh per 100 mi
В	Chevrolet Bolt (2016)	66	259	960	ST: 190	20%	68.8 Wh/Lbs.	25.5 kWh per 100 mi
с	Nissan LEAF (2017)	62	226	904	ST: 180	20%	68.6 Wh/Lbs	27.4 kWh per 100 mi.
D	Ford Mach-E (2020)	75.7 (70 usable)	230	1069	AL Extrusion: 168 AL Sheet: 45 Composite: 42	25%	70.8 Wh/Lbs.	30.4 kWh per 100 mi
E	Tesla Model S (2012)	85	265	1200	AL: 240 ST: 35	23%	70.8 Wh/Lbs.	32.1 kWh per 100 mi

Source: Ducker

BATTERY ENCLOSURE - STEEL SOLUTION

 Manufacturing • Impact Resistance Space Saving • Fire Advantages resistance/Preconditioning • Lower cost • Sustainability • Corrosion • Thermal Management Disadvantages • Limited ability to consolidate parts

LOAD CASES

Modal	Crush test	<u>Underfloor</u> Intrusion	Drop Test	Shock Test	<u>Vibrational</u> <u>Fatigue</u>
	EU ECE R100 ChinaGBT31467.3		SAE J2464 China-GBT31467		China -GBT31467
Constraint on BIW attachments	Quasi Static Load Rigid Pole Impactor 150 mm –Dia.	Quasi Static Load Round Shape 20 mm rigid impactor	Drop from 4.9m (Hitting velocity 9.8m/s). Angle with ground 15 degrees.	Proof Shock 2g (x,y)& 4g in Z Abuse Shock (25g)	0.0100 0.0100 0.0010 0.0010 1 10 Hz 100 1000
Frequency constraint depending on OEM	No contact with Modules before reaching 100 kN	No contact with modules before reaching 35 kN	No failures	Stresses below Yield/Tensile	Stresses below tensile/6

MODAL/DROP TEST

CRUSH & UNDER FLOOR TEST

GDI

DIFFERENT BATTERY ENCLOSURE DESIGNS

Top and Bottom Cover

DIFFERENT BATTERY ENCLOSURE DESIGNS

Longitudinal Members

Longitudinal Members Martensitic M1100/M1300/M1500/M1700 Roll Form

DIFFERENT BATTERY ENCLOSURE DESIGNS

Cross Members

Cross Members Martensitic M1100/M1300/M1500/M1700 Roll Form

DIFFERENT BATTERY ENCLOSURE DESIGNS

Longitudinal & Cross Members

Longitudinal & Cross Members Martensitic M1100/M1300/M1500/M1700 Roll Form

BEV - INTEGRATED BATTERY/BODY DESIGN

20 YEARS GDIS

- Industry is heading in this direction
- Integrating battery enclosure to the chassis structure
- Skateboard design
- Steel offers the same advantages as before

SUMMARY

- Steel is clearly the material of choice for the battery enclosure
- Cleveland Cliffs provide a wide portfolio of steel grades for this application

 In addition to the research and innovation center at Middletown, Ohio, Cleveland Cliffs offers a most comprehensive support with our advanced, applications, and customer technical services departments

FOR MORE INFORMATION

Sajan George Cleveland-Cliffs

sajan.elengikal@clevelandcliffs.com

