

TWENTY YEARS

FORMABILITY EVALUATIONS OF AHSS LASER-WELDED BLANK

Hyunok Kim – Forming Center Director, EWI

Dawn Stubleski - New Product Development Manager, TWB Company

DJ Zhou – Auto/Steel Partnership Project Lead

On Behalf of Auto/Steel Partnership

BACKGROUND

- Laser-welded blank (LWB) are widely applied to automotive closures, body-in-white and chassis structures
- Major benefits of LWBs:
 - Light-weighting
 - Improved material utilization
 - Improved crashworthiness
 - Reduced overall production costs through part consolidation

TECHNICAL GAPS

- The formability of LWBs is greatly influenced by:
 - Base metal (BM) properties
 - $\,\circ\,$ Thickness and strength ratios of the welded steels
 - Weld orientation, location, and heat affected zone (HAZ)
- AHSS welds exhibit less ductile weld seams that are difficult to predict with standard forming simulations
- Designers should understand the reduced formability and unique behavior of LWBs during forming

Base metal fracture

OBJECTIVES

- Determine the forming limit and fracture characteristics of LWBs under uniaxial tension, plane-strain tension, and biaxial tension
- Understand the relationship between microstructure/micro-hardness profiles and the formability of various LWBs
- Develop material models for the laser weld to be used as inputs to forming simulations of LWBs to substantially enhance simulation accuracy

SELECTED LASER WELDED BLANK MATERIALS

Nine different LWB combinations were fabricated for the project.

Weld Couple	Sample ID	Base Metal 1	Base Metal 2
1	SM-ST-1	HSLA 340 (1.2 mm)	HSLA 340 (1.2 mm)
2	SM-ST-2	CR3 (1.2 mm)	CR3 (1.2 mm)
3	SM-ST-3	DP980 (1.6 mm)	DP980 (1.6 mm)
4	SM-ST-4	DP1180 (1.4 mm)	DP1180 (1.4 mm)
5	SM-ST-5	DP780 (1.2 mm)	DP780 (1.2 mm)
6	SM-DT-1	HSLA 340 (1.2 mm)	HSLA 340 (2.6 mm)
7	SM-DT-2	DP980 (1.6 mm)	DP980 (1.3 mm)
8	DM-ST-1	CR3 (1.2 mm)	HSLA 340 (1.2 mm)
9	DM-DT-4	DP1180 (1.4 mm)	DP780 (1.2 mm)

- SM-ST: Same Material Same Thickness
- SM-DT: Same Material Different Thickness
- DM-ST: Different Material Same Thickness
- DM-DT: Different Material Different Thickness

HARDNESS MAP DATA

DM-DT-4: DP1180 (1.4 mm) + DP780 (1.2 mm)

- Max. Hardness: 479 HV
- Min. Hardness: 224 HV
- LWBs with DP steels show hardness drops between HAZ and base metal:
 - 104 HV for DP1180
 - 30 HV for DP780

*Applied load for micro-hardness testing: 300 grams

VARIATION OF HARDNESS PROFILES

 All three DP steels show distinguishable hardness drops in HAZ (i.e., HV_{weld} > HV_{basemetal} > HV_{HAZ}).

Note: Results are based on steel samples from the A/SP and should not be applied to all steel suppliers.

MICROSTRUCTURE EXAMPLE

SM-DT2: DP980 (1.6 mm) + DP980 (1.3 mm)

- Microstructure varies in weld metal (WM), HAZ, and BM.
- Different gauges and grades influence the microstructure in HAZ and Subcritical HAZ.

UNIAXIAL TENSILE TESTS

• Four different tensile tests were preformed to characterize the formability of the LWB under uniaxial tension.

EXPERIMENTAL SETUP

- Instron 5500R 10-kip static tensile frame was used for the uniaxial tensile test
- Crosshead speed: 0.012 inch/min (Quasi-static)
- Analog data was synchronized with the digital image correlation (DIC) system
- Data acquisition software: Vic-Snap-6
- Postprocessing software: Vic-3D 8
- No shim was used in DM-DT-4 (1.4 1.2-mm thickness) sample due to sufficient grip contact
- 10 Hz image capture rate (10 frames/sec)
- DIC time step has minimal interruption by using high-speed SSD

WELD MATERIAL VS. BASE MATERIALS

- The standard tensile test was used for both base materials while the mini-weld tensile used for the weld metal.
- The weld metal shows similar yield and tensile strengths with the DP1180 rather than DP780.
- The weld metal shows 50% reduction of the uniform elongation compared to DP1180.

COMPARISON OF TOTAL ELONGATION

Mean (TE_{base} + TE_{mini-weld}) \approx TE_{vertical weld tensile}

DMDT4 (DP1180_1.4t+DP780_1.2t) DMST1 (CR340 1.2t+CR3 1.2t) SMDT2 (DP980 1.3t+1.6t) SMDT1 (CR340_1.2t+2.6t) SMST5 (DP780_1.2t) SMST4 (DP1180_1.4t) SMST3 (DP980_1.6t) SMST2 (CR3_1.2t) SMST1 (CR340_1.2t) 35 5 10 15 25 30 50 20 45 % Total Elongation Base Metal TE at Weaker Side Weld metal TE Vertical Welded Dog Bone TE

BM Tensile

Mini-weld tensile

Vertical Weld Tensile

HORIZONTAL TENSILE TEST

• The majority of tensiles with HAZ hardness drop fractured at the weld or HAZ.

Sample ID	Hardness Drop (HV)	LWB Fracture Location
SM-ST-1: CR340 (1.2MM)	0	Base metal
SM-ST-2: CR3 (1.2MM)	0	Base metal
SM-DT-1: CR340 (1.2MM) + CR340 (2.6MM)	0	Base metal
DM-ST-1: CR340 (1.2MM) + CR3 (1.2MM)	0	Base metal

Sample ID	Hardness Drop (HV)	LWB Fracture Location
SM-ST-3: DP980 (1.6MM)	72	Base metal
SM-ST-4: DP1180 (1.4MM)	100	Weld or HAZ
SM-ST-5: DP780 (1.2MM)	50	Weld or HAZ
SM-DT-2: DP980 (1.2MM) + DP980 (1.6MM)	74	Weld or HAZ
DM-DT-4: DP1180 (1.4MM) + DP780 (1.2MM)	104	Weld or HAZ

EXPERIMENTAL SETUP FOR PLANE-STRAIN AND BIAXIAL STRETCH TESTS

 Most experiments were performed using a standard dome punch in the Erichsen Universal Sheet Metal Testing Machine with DIC.

DIC measured strain

STRAIN PATHS OF BIAXIAL AND PLANE-STRAIN SAMPLES

SM-ST-3: DP980 (Lot 24) – DP980 (Lot 24)

• Same gauge and strength LWBs (SM-ST) kept the biaxial and plane-strain strain paths.

STRAIN PATHS OF BIAXIAL AND PLANE-STRAIN SAMPLES

DM-DT-4 (DP1180 + DP780)

Strain

Major True

Different gauge and strength LWBs (SM-DT and DM-ST) showed the biaxial samples' strain path shifted to the plane-strain condition.

Minor True Strain

DOME HEIGHT RATIO FOR THE PLANE-STRAIN CONDITION

- LWB without a HAZ hardness drop averaged a 7% to 34% dome height reduction.
- LWB with a HAZ hardness drop averaged a 32% to 52% dome height reduction.

Ratio of LWB to Base Metal Dome Height in the Plane Strain Condition

MAJOR STRAIN LIMIT RATIO (LWB VS. BM)

- Major strain limit ratio ($a_{LB} = \epsilon_{1, LWB} / \epsilon_{1, BM}$) of LWB and BM is well correlated to base metal necking and weld or HAZ fracture.
- When $a_{LB} < 0.95$, weld fracture; when $a_{LB} \ge 0.95$ base metal necking.

PLAIN-STRAIN FRACTURE LOCATION

Hardness drop in HAZ strongly influences fracture location.

Sample ID	Hardness Drop (HV)	LWB Fracture Location	
SM-ST-1: CR340 (1.2MM)	0	Base metal	
SM-ST-2: CR3 (1.2MM)	0	Weld or HAZ	
SM-DT-1:		Base metal	
CR340 (1.2MM) + CR340 (2.6MM)	0		
DM-ST-1:		Base metal	
CR340 (1.2MM) + CR3 (1.2MM)	0	Dase metal	

Sample ID	Hardness Drop (HV)	LWB Fracture Location
SM-ST-3: DP980 (1.6MM)	72	Weld or HAZ
SM-ST-4: DP1180 (1.4MM)	100	Weld or HAZ
SM-ST-5: DP780 (1.2MM)	50	Weld or HAZ
SM-DT-2: DP980 (1.2MM) + DP980 (1.6MM)	74	Weld or HAZ
DM-DT-4: DP1180 (1.4MM) + DP780 (1.2MM)	104	Weld or HAZ

Major True Strain at Necking

KEY TAKEAWAYS

- LWBs showed reduced formability compared to the base metals
 - 7~36% for the uniaxial tension
 - 23~52% for the plane strain
- Micro-hardness testing is useful to measure hardness variation and softening of the HAZ (hardness drop) for the DP steel.
- Two formability testing methods are recommended to characterize the formability of LWBs:
 - \circ Total elongations of both horizontal and vertical weld tensile tests with DIC
 - Maximum dome height and major strain limit of the plane-strain forming with DIC
- Enhanced prediction capability of the LWBs and material databases will assist designers in implementing LWBs for automotive structural applications.

FOR MORE INFORMATION

Hyunok Kim, EWI

hkim@ewi.org

https://ewi.org/capabilities/forming/

Dawn Stubleski, **TWB** Dawn.Stubleski@twbcompany.com

Dajun Zhou, **Stellantis** <u>dj.zhou@stellantis.com</u> More Questions? Meet Hyunok at the Auto/Steel Partnership booth after this presentation.

