

INTEGRATED PROCESS & PERFORMANCE MODELS FOR RSW OF 1ST & 3RD GEN STEELS

Fernando Okigami, and Wei Zhang, *The Ohio State University* Hassan Ghassemi-Armaki, *General Motors R&D* Zhenke Teng, *General Motors Global Manufacturing Engineering* On Behalf of Auto/Steel Partnership

BACKGROUND

- Resistance spot welding (RSW) the most widely used joining process in the automotive industry
- Many combinations of stacks to be welded in a lightweight body structure due to different steel grade, thickness, coating, 2T, 3T, etc.
- Reducing the number of physical tests and prototypes can greatly speed up the automotive body design and engineering process
 - One solution is to computationally assess RSW joint performance

TECHNICAL GAPS IN RSW MODELING

- Majority of models are for joint performance only, without the welding process knowledge.
 - Prerequisites: nugget size, indentation, notch shape, and micro-hardness map
 - A new model will be needed when the welding parameters and stacks change
- Highly inhomogeneous mechanical properties in the joint regions ranging from weld metal, coarse grained heataffected zone (HAZ), subcritical HAZ to base metal
- Sophisticated failure models are needed to accurately capture joint behavior in complex loading conditions
 - Strain-based models are mesh dependent
 - Gurson-type, MMC, and Johnson-Cook models have been explored in the literature

Picture from H. Rezayat et al., Metallurgical and Materials Transactions A, 2020.

PROCESS & PERFORMANCE MODEL

Process model:

- Coupled electro-thermo-mechanical finite element simulation
- Advanced contact formulation that detects fusion bonding and changes contact to glue

Performance model: mechanical simulation with failure

Same mesh and glued connection to facilitate automated integration of process and performance models

Predicting important aspects like:

- Temperature field
- 3D sample shape
- Indentation
- Notch shape
- Nugget size
- Microstructure
- Residual stress
- Plastic strain

• Key outputs: Nugget size, and local peak temperature $\Im_{1600}^{\overline{v}}$

- Performance model:
 - Key inputs: Microstructure-specific stress-strain curves (e.g., those for HAZ)*
 - Key outputs: Load-displacement curve and failure mode in tension shear and cross tension
- Finite element solver: Simufact
- For each steel, one nugget size in tension shear configuration was used to calibrate the inputs such as electrical contact resistance and damage parameters
- The calibrated model was then extended to simulate other nugget sizes and joint configurations

* Data taken from H. Rezayat et al., Metallurgical and Materials Transactions A, 2020.

PROCESS & PERFORMANCE MODEL

- Steels studied: DP980 and 3rd Gen-980
- RSW process model:
 - **Key inputs**: Material bulk resistivity and electrical contact resistance

2200

SCHAZ. 350 °C

HAZ, 500 °C

PROCESS & PERFORMANCE MODEL DP 980

RSW PROCESS MODELING

20 YEARS GDIS

General material data – JMatPro, literature, Thermo-Calc calculations

 Electrical contact resistance – Analytical equation with parameters calibrated using a FDWS macrograph.

$$p(T,p) = r_0 \cdot \left(\frac{p - p_k}{p_0 - p_k}\right)^{\varepsilon_p} \cdot \left(\frac{T - T_{lim} + (T_0 - T) \cdot 2^{\frac{-1}{\varepsilon_T}}}{T_0 - T_{lim}}\right)^{\varepsilon_p}$$

 $r_0 \rightarrow base resistance$

 $p_k \rightarrow corrective \ pressure \ term$

 $p_0 \rightarrow$ reference pressure

 $T_0 \rightarrow$ room temperature (i.e., 293.15K)

 $T_{lim} \rightarrow half-value temperature$

 $\epsilon_p \rightarrow \text{pressure contribution exponent}$

 $\epsilon_T \rightarrow$ temperature contribution exponent

FDWS – Face diameter weld size

22MnB5. Materials and Design, 106, 139-145. https://doi.org/10.1016/j.matdes.2016.05.097

Kaars, J., Mayr, P., & Koppe, K. (2016). Generalized dynamic transition resistance in spot welding of aluminized

RSW PROCESS – DP980LC

Correlation with experimental data

Nugget size prediction vs experiment

8

PERFORMANCE MODEL – DP980LC

Damage model: Johnson-Cook

lodel parameters				
Constant	Param.	Value		
Damage parameter	D ₁	2.0	-	~
Damage parameter	D ₂	1.0	-	
Damage parameter	D ₃	-0.9	-	~
Damage parameter	D ₄	0.0	-	
Damage parameter	Ds	0.0	-	\sim
Damage display threshold	С	0.0	-	~
Element removal threshold		0.02	-	~
Damage exponent	n _D	1.0	-	\sim
Material degradation		None (Indicator)		\sim

- Suitable for almost every type of cracks
- Accurate damage prediction if parameters are calibrated
- Failure treated via element removal during simulation

FDWS was used to calibrate the JC damage parameters in tension shear and then applied to cross tension

4000

Tension shear

20000

18000

16000

14000

(N) 12000 93 10000 94 0000

8000

PERFORMANCE MODEL – DP980LC

Tension Shear

Curve shape, peak force and extension until peak force showed good correlation

PERFORMANCE MODEL – DP980LC

Cross tension

Correlation of Local Constitutive Properties to Global Mechanical Performance of Advanced High-Strength Steel Spot Welds. Rezayat, H., et al., 2021

A

PERFORMANCE MODEL – DP980LC

• Capturing the effect of nugget size

Failure mode: Interfacial failure

FACTORS AFFECTING PERFORMANCE MODELING

W/O HAZ properties

W/ HAZ properties

W/O HAZ properties + JC

W/ HAZ properties + JC

DP980 - TS configuration

Without HAZ properties the peak force is underpredicted

FACTORS AFFECTING PERFORMANCE MODELING

Residual stress and strain occurred during welding seem to be of secondary influence on performance

PROCESS & PERFORMANCE MODEL 3RD GEN 980

RSW PROCESS – 3RD GEN 980

- KSII sample
 - 3rd Gen, 1.4mm thickness, 616MPa yield, 1013MPa tensile
 - Cu electrode with 7mm flat tip diameter
 - 9.1kA two-pulse current, 4.9kN force
 - Nugget diameter 7mm

Cool Weld time

Hold time

RSW PROCESS – 3RD GEN 980

- Bulk resistivity Room temperature data and Thermo-Calc calculations
- Electrical contact resistance Same equation as that for DP980LC but with new calibrated parameters from 3rd Gen-980 macrograph

RSW PROCESS – 3RD GEN 980

Correlation with experimental data

Simulation for FDWS 7.0mm

*17min calculation time

Comparison of experiment and simulation for FDWS

RSW process shows good adaptability to new materials and welding schedules

PERFORMANCE MODEL – 3RD GEN 980

Results from RSW simulation

*13min calculation time

FDWS-GEN3-980-KSII-90deg - Result view #

Showing a clipping plane at the center across the width. The model is full 3D with no symmetry planes used.

RSW results for the KSII configuration being transferred to the performance model

PERFORMANCE MODEL – 3RD GEN 980

• KSII 90deg pull result

KSII 90deg (CT configuration) tensile test considering results from the RSW process

CONCLUSIONS & FUTURE WORK

TAKEAWAY POINTS

- Highly-integrated process and performance models implemented in Simufact are very promising to be used as a predictive tool
- RSW process model shows good agreement and predictability for 1st and 3rd Gen steels
 - Electrical contact resistance is a key factor for accurate process simulation
- Performance model using Johnson-Cook captured the failure behavior for DP980 in tension shear and cross tension; 3rd Gen-980 is work in progress.
 - Microstructure-specific stress-strain curve is a key factor for accurate performance simulation

FUTURE WORK

• Future work

- Evaluate performance of other failure models for different welding schedules and capture failure mode
- Extend the process model to predict occurrence of liquid metal embrittlement based on local stress, strain and temperature histories

ACKNOWLEDGMENTS

20 YEARS GDIS

Prof. Wei Zhang (OSU) – Theoretical and numerical guidance during modeling, debugging and evaluation of results

Hassan Ghassemi-Armaki (GM, A/SP) – Big help with obtaining and interpreting experimental data and discussion on simulation approaches

Wayne Cai (GM, A/SP) – Thank you for the opportunity to participate in the A/SP project

Eric McCarty (A/SP) – Thank you for facilitating the communication and being a great project manager

Jeff Robertson (Hexagon/Simufact) – Thank you for providing licenses and making internal resources available

Prof. Elliot Biro and his students (University of Waterloo) for providing experimental data from their A/SP Projects for model validation

FOR MORE INFORMATION

Eric McCarty Auto/Steel Partnership <u>emccarty@steel.org</u>

Fernando Okigami The Ohio State University okigami.1@osu.edu

Hassan Ghassemi-Armaki General Motors hassan.ghassemi-armaki@gm.com **More Questions?** Meet Fernando at the Auto/Steel Partnership booth after this presentation.

