A NOVEL TECHNIQUE TO MEASURE THE LOCAL MECHANICAL PROPERTIES OF 3RD GEN AHSS SPOT WELDS

A.R. H. Midawi¹, *, M. Shojaae¹, H. Ghassemi-Aramki², C. Butcher¹, M. Worswick¹, E. Biro¹

On Behalf of Auto/Steel Partnership

¹ Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada², General Motors Company R&D, Manufacturing Systems Research Laboratory, Michigan, USA
PRESENTATION OVERVIEW

- Introduction and Motivation
- Objective
- Materials and Methodology
- Results and Discussion
 - Novel technique to estimate the mechanical properties
 - Mini-tensile test for AHSS spot welds
 - Mini-shear test for AHSS FZ
 - Hardness scaling approach
 - Comparison between Hardness and tensile/mini-shear approach
- Conclusion and future work
Recent studies by Sherepenko *et al.* utilized the **hardness scaling** approach to predict the failure behavior of PHS RSW.

Rezayat *et al.* highlighted uncertainty regarding utilizing the **hardness scaling** approach.
COMMON APPROACHES TO EXTRACT LOCAL RSW PROPERTIES IN LITERATURE

Yunwu Ma, Akira Takikawa, Jun Nakanishi, Kazuyoshi Doira, Tetsuo Shimizu, Yongxin Lu, Ninshu Ma

Measurement of local material properties and failure analysis of resistance spot welds of advanced high-strength steel sheets

Materials and Design 201 (2021) 109505

Miniature tensile

Miniature coach peel

Heat treatment to reproduce HAZ hardness

Development of fracture loci for different zones

TWO HALF SPOT WELD TESTING APPROACH TO MONITORING THE DAMAGE PROGRESS AND FAILURE IN AHSS WITH DIFFERENT NUGGET SIZES

OBJECTIVE

- Develop an **experimental** technique to **measure** the local mechanical properties of the spot weld using DIC
- **Compare** the DIC results with the **hardness scaling** approach
- Extract the **fusion zone** mechanical properties using mini-shear geometry
- **Verify the Gleeble** experimental results (future work)
MATERIALS AND WELDING METHODOLOGY
MECHANICAL PROPERTIES / WELDING SCHEDULE

- RSW conducted using Honda RSW robot
- Welding schedule according to AWS D8.9 standard
- BM tensile properties according to ASTM E8

Welding schedule used to produce Face Diameter Weld Size

<table>
<thead>
<tr>
<th>Material</th>
<th>Current-kA</th>
<th>Squeeze time- Cycle</th>
<th>Welding time-Cycle</th>
<th>Electrode force- kN</th>
<th>Holding time-Cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHS-1500</td>
<td>8.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3<sup>RD</sup> GEN-1180</td>
<td>9.0</td>
<td>10</td>
<td>10-2-10</td>
<td>4.9</td>
<td>10</td>
</tr>
<tr>
<td>3<sup>RD</sup> GEN-980</td>
<td>9.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MICROSTRUCTURE AND MICROHARDNESS RESULTS

FZ: Fusion zone
UCHAZ: Upper-critical heat affected zone (above AC₃)
ICHAZ: Inter-critical heat affected zone (between AC₃ & AC₁)
SCHAZ: Sub-critical heat affected zone (below AC₁)
NOVEL TECHNIQUE TO ESTIMATE THE LOCAL MECHANICAL PROPERTIES FOR SPOT WELDS USING DIC
PROPOSED METHOD TO CHARACTERIZE THE LOCAL MECHANICAL

- Using Iso-stress assumption to extract the local stress-strain data

- Due to the HAZ softening strain may localize in the softened HAZ, which will prevent deformation in the FZ. Therefore, a novel mini-shear coupon of the spot weld was used to extract the fusion zone properties
• The top surface of the sample from both sides was *ground* to remove the corona bond HAZ layer, approximately 0.4 mm was removed from each side to reveal the nugget and HAZ.

![Sample Image]

• ASTM sub-size tensile coupons were machined from the welded coupons in order to perform DIC tensile test.

![DIC Tensile Test]

![Sample Images]
3RD GEN-980 TENSILE TEST RESULTS

Local SS-curves for 3RD Gen-980

- Failure in the BM, SCHAZ showed higher mechanical properties these results were in agreement with the hardness profiles, secondary hardening was observed in the SCHAZ.
- No deformation was observed in the FZ and UCHAZ.
3RD GEN-1180 TENSILE TEST RESULTS

- Failure in the SCHAZ, there was some deformation was observed in the ICHAZ
- No deformation was observed in the FZ and UCHAZ.
PHS-1500 TENSILE TEST RESULTS

- Strain localized in the SCHAZ due to the severe softening in the microstructure (Martensite tempering)
- No deformation was observed in the FZ and UCHAZ.
LOCAL SS-CURVES FOR ALL MATERIALS EXTRACTED FROM THE DIC

Strain path at fracture location and for BM

0.00 0.05 0.10 0.15 0.20 0.25

0.0 200 400 600 800 1000 1200 1400 1600 1800

True stress- (MPa)

0.00 0.05 0.10 0.15 0.20 0.25

0.0 200 400 600 800 1000 1200 1400 1600 1800

True stress- (MPa)

0.00 0.05 0.10 0.15 0.20 0.25

0.0 200 400 600 800 1000 1200 1400 1600 1800

True stress- (MPa)
• Mini-shear test to extract the FZ mechanical properties (can be used to estimate UCHAZ properties)

• Two sheets with dimensions (25 mm by 50 mm) were welded together then machined to fabricate mini-shear spot weld coupons as shown:

• The samples were etched using a Nital etching solution to reveal the fusion zone area to make sure the weld is in the center of the sample
MINI-SHEAR RESULTS

- Fusion zone mini-shear test data showed a consistent trend
- Voids in the PHS-1500 fusion zone led to strain localization and lower shear strain in some tests
The stress ratio is assumed to be constant during deformation (0.558).

- Strain path of the mini-shear tests for the three materials matched the ideal shear strain path.
- All FZ showed a martensitic microstructure; however, the C_{eq} is different, which will lead to the variation in the mechanical properties.
- The fusion zone properties can be used in the UCHAZ.
MICROHARDNESS SCALING APPROACH

<table>
<thead>
<tr>
<th>Material/Zone</th>
<th>BM</th>
<th>FZ</th>
<th>HAZ-1 (UCHAZ)</th>
<th>HAZ-2 (ICHAZ)</th>
<th>HAZ-3 (SCHAZ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3RD Gen-980</td>
<td>289±3</td>
<td>530±11</td>
<td>527±13</td>
<td>427</td>
<td>300±5</td>
</tr>
<tr>
<td>3RD Gen-1180</td>
<td>406±3</td>
<td>488±5</td>
<td>487±6</td>
<td>420</td>
<td>377±23</td>
</tr>
<tr>
<td>PHS-1500</td>
<td>502±9</td>
<td>498±6</td>
<td>494±13</td>
<td>465</td>
<td>323±2</td>
</tr>
</tbody>
</table>

Graphs:
- **Hardness vs. Distance:**
 - **BM:** Baseline material.
 - **FZ:** Fusion zone.
 - **UCHAZ:** Upper heat-affected zone.
 - **ICHAZ:** Intermediate heat-affected zone.
 - **SCHAZ:** Lower heat-affected zone.
- **Hardness Ratio vs. Distance:**
 - **BM:** Baseline material.
 - **FZ:** Fusion zone.
 - **UCHAZ:** Upper heat-affected zone.
 - **ICHAZ:** Intermediate heat-affected zone.
 - **SCHAZ:** Lower heat-affected zone.
STRESS-STRAIN CURVES GENERATED USING THE HARDNESS RATIO METHOD

- This method assumes the hardening behavior of different zones across the weld similar to the BM.

The representative SS curves obtained from the hardness scaling approach will be compared to the tensile data were extracted from the mini-shear and mini-tensile test.
The hardness scaling approach can estimate the stress-strain curves of different zones across the weld as long as the sub-zone has a similar microstructure as the BM.
The hardness scaling approach could only estimate the mechanical properties if the microstructures across the weld result in a consistent strain hardening.
CONCLUSION & FUTURE WORK
CONCLUSION/ RECOMMENDATIONS

- The novel technique of measuring local properties of spot weld fusion zone enables more accurate modelling of 3RD GEN AHSS spot weld performance.
- More work is required to further evaluate and develop the methodologies via FE modelling
- Modelling of spot weld can be improved by:
 - Estimate flow properties of different HAZ using mini-tensile welded samples
 - Directly measuring the stress-strain curves for FZ using a mini-shear coupon
 - Hardness scaling can be used to estimate the flow properties of HAZ and FZ as long as the microstructures of the target zone are similar to the BM.
 - Thermal simulation of the HAZ microstructure using Gleeble is another way to estimate the local properties.
THANKS FOR YOUR ATTENTION

FOR MORE INFORMATION

Abdelbaset R.H. Midawi- PhD
Research Associate
Centre for Advanced Materials Joining (CAMJ)
Waterloo Forming & Crash Lab
Department of Mechanical and Mechatronic Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1
Email: amidawi@uwaterloo.ca
phone: +(1)226-700-5152

Cliff Butcher- PhD
Assistant Professor
Waterloo Forming & Crash Lab
Department of Mechanical and Mechatronic Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1
Email: cbutcher@uwaterloo.ca
phone: +(1)519-888-4567 X 31795

More Questions? Meet the speaker at the Auto/Steel Partnership booth after this presentation.