

TWENTY YEARS

CHARACTERIZATION OF MECHANICAL PROPERTIES AND FAILURE BEHAVIOR OF 3RD GEN AHSS SPOT WELDS UNDER COMBINED LOADING MODE

M. Shojaee, C. Tolton, A.R.H. Midawi, C. Butcher, H. Ghassemi-Armaki, M. Worswick, E. Biro

Centre for Advanced Materials Joining, University of Waterloo, Canada General Motors Company R & D, Manufacturing Systems Research Laboratory, USA On Behalf of Auto/Steel Partnership

PRESENTATION OUTLINE

- Introduction
- Materials and methods
- RSW parameter optimization
- Microstructure and micro-hardness characterization
- KS-II combined loading results
- Conclusions

INTRODUCTION TO 3RD GEN AHSS

First generation AHSS: lean compositions, better strength and crash performance than HSS.

Second generation AHSS: Superior mechanical properties, elevated alloying additions, relatively expensive.

Third generation AHSS: Better strength/ ductility than 1G AHSS, lower allowing elements than 2G AHSS.

¹WordAutoSteel. Advanced high strength steel (AHSS) application guidelines (version 4.1). WorldAutoSteel; June 2009.

²ArcelorMittal congratulates Volvo on XC40 winning Car of 2018 with AHSS - Automotive." [Online]. Available: https://automotive.arcelormittal.com/News/2018 news/Volvo-XC40-COTY-2018..

INTRODUCTION TO RSW PROCESS

Resistance Spot Welding is the most common joining technique in the automotive industry

GD

OBJECTIVE

Characterize mechanical performance and failure behavior of 3rd Gen AHSS spot welded joints upon combined loading condition

- Load bearing capacities
- Energy absorption capabilities
- Failure response

MATERIALS AND METHODS

Material	Carbon equivalent	Nominal sheet thickness [mm]	YS [MPa]	UTS [MPa]	EI [%]
3G-980 (uncoated)	0.64	1.4	616±2.64	1013±15.4 0	19.89
3G-1180 (uncoated)	0.7	1.4	967±7.05	1181±19.0 2	11.83

YS, yield strength; UTS, ultimate tensile strength; TE, total elongation; UE, uniform elongation;

Material	Number of pulses	Total welding time (ms)	Squeeze time (ms)	Hold time (ms)	Cooling between pulses (ms)
3G-980 (uncoated)	2	334	167	167	34
3G-1180 (uncoated)	2	334	167	167	34

Honda RSW Robot

MATERIALS AND METHODS

KS-II combined loading mechanical testing methodology:

۰ د

KSII- 0° Specimen

Tests were coupled with three dimensional Digital Image Correlation (DIC)

OPTIMIZED RSW PARAMETERS

Welding current parameter was optimized by performing traditional Lap Shear and Cross Tension mechanical tests at 0.5 kA welding current intervals and selecting the highest load bearing capability without expulsion.

OPTIMIZED RSW CHARACTERISTICS

The optimized welding schedule resulted in a face diameter weld size (FDWS) of 7 mm for both materials.

Noticeable slippage and rotation of specimen at shear-dominated loading orientations

Negligible slippage and rotation of specimen at tensile-dominated loading orientations

Snapshots of different loading orientations showing a combination of rotation and slippage at shear-dominated loading orientations.

Novel local nugget displacement methodology proposed to minimize influence of coupon rotation and slippage on spot weld performance indices.

Second benefit of local nugget displacement: Capability to calculate spot weld energy absorption capability in shear and tensile directions independently.

Failure analysis: Interrupted KS-II tests within shear-dominated loading orientations revealed tendency of failure through softened SCHAZ for 3rd Gen-1180 joints.

- Failure analysis: Interrupted KS-II tests within tensile-dominated loading orientations revealed tendency of crack propagation within the fusion zone of 3rd Gen-1180.
- Propagation of cracks into the fusion zone of 3rd Gen-1180 spot welds is causing limited post-failure energy absorption.

SUMMARY

- RSW process was optimized for investigated 3rd Gen AHSS by producing joints with optimum load bearing capacities during lap shear and cross tension tests.
- Mechanical properties (strength and energy absorption) and failure characteristics of 3rd Gen AHSS spot welds under combined loading conditions were investigated.

CONCLUSIONS

• A novel methodology coupling digital image correlation with KS-II testing was proposed.

The proposed [.

- methodology
- more accurate calibration of strength-based failure criteria → instantaneous quantification of nugget orientation
 more precise measurement of nugget displacement → minimizing the influence of slippage and deformation

allows for

- more precise measurement of nugget displacement \longrightarrow minimizing the influence of slippage and deformation increased accuracy for spot weld energy absorption calculation \longrightarrow Calculating in shear and tensile directions separately
- Propagation of the cracks into the fusion zone of the 3rd Gen-1180 spot welds is responsible for their inferior energy absorption and strength compared to 3rd Gen-980 spot welds within tensile-dominated loading orientations.

FOR MORE INFORMATION

Mohammad Shojaee University of Waterloo <u>mshojaee@uwaterloo.ca</u> Cameron Tolton University of Waterloo cjtolton@uwaterloo.ca Dr. Abdelbaset Midawi University of Waterloo amidawi@uwaterloo.ca

Prof. Cliff Butcher University of Waterloo <u>cbutcher@uwaterloo.ca</u>

Prof. Elliot Biro University of Waterloo <u>elliot.biro@uwaterloo.ca</u> Dr. Hassan Ghassemi-Armaki General Motors R&D <u>hassan.ghassemi-armaki@gm.com</u>

More Questions? Meet the speaker at the Auto/Steel Partnership booth after this presentation.

Second benefit of local nugget displacement: Capability to calculate spot weld energy absorption capability in shear and tensile directions independently.

Third benefit of local nugget displacement: Exclusion of the influence of slippage and deformation at regions away from the spot weld on extracted load-displacement curves.

Pullout with severe

rotation and deformation

Noticeable plastic deformation around the nugget