

EVALUATION OF LME CRACKING SEVERITY IN HOMOGENEOUS & HETEROGENEOUS JOINTS OF 3RD GEN AHSS

Kevin Teng¹, Warren Peterson², Hassan Ghassemi-Armaki¹

- 1. General Motors Company
- 2. United Technical Solutions

On Behalf of Auto/Steel Partnership

LIQUID METAL EMBRITTLEMENT (LME)

LME Cracks

WorldAutoSteel, 2020

Deep zinc penetration into grain boundaries

3 specific enablers

Kang, Cho, Lee, DeCooman 2016

GDI

PROJECT GOALS

Develop a test procedure(s) to evaluate LME

- Susceptibility of materials: "Rapid LME Test"
- Cracking severity in production stack-ups
- Acceptance Criteria

Phase	Approach	Stack-Up	Time
1	Gleeble Test	2T Homogeneous	2018-2019
2	Rapid LME Test	2T Homogeneous	2019-2020
3	Weld Lobe LME Test	2T & 3T Heterogeneous	2020-2021
4	LME Acceptance Criteria	TBD	2021-2022

20 YEARS GDIS

Example Target Application

Typical B Pillar Stack-up Body side outer (0.7 mm mild steel) + B Pillar Outer (1.6 mm 3rd Gen 980) + B Pillar Inner (1.6 mm 3rd Gen 980/DP)

PROJECT APPROACH

 Develop a method(s) to evaluate cracking severity of 2T and 3T heterogeneous stack-ups

Rapid LME

- Upslope pulsation to increase heat input gradually
- High-heat welding condition

Current Profile for <u>8 Progressive Sloping Impulses</u>

Weld Lobe LME

Traditional weld schedulesProduction welding conditions

https://www.steel.org/wp-content/uploads/2020/09/20200312-General-

Motors-Rapid-LME-Testing-Procedure-for-Automotive-Sheet-Steels-v20.pdf

PROJECT APPROACH: STACK-UPS

Materials

Material #	Material Description	Steel Sample Bank Designation	Thickness	Rapid LME Rating
1	3 rd Gen 980 - GI	Lot#168: 1.60 mm CR600Y980T-RA-SE-GI	1.6 mm	-1.0B
2	3 rd Gen 980 – GI	Lot#203: 1.00 mm CR600Y980T-RA-xx-GI	1.0 mm	3.0D
3	3 rd Gen 980 - GI	Lot#134: 1.6 mm CR600Y980T-RA-GI	1.6 mm	1.5D
4	3 rd Gen 1180 - GI	Lot#166: 1.00 mm CR1000Y1180T-RA-SE-GI	1.0 mm	-4.0D
5	CR4 - GI	Lot#221: 0.70 mm CR4 GI 60G60G	0.7 mm	

Stack-Ups

Stack-Up #	Sheet 1	Sheet 2	Sheet 3]		
1	Lot#168: 1.6 mm 3 rd Gen 980 - GI	Lot#168: 1.6 mm 3 rd Gen 980 - GI			2T Homodonoou	
2	Lot#203: 1.0 mm 3 rd Gen 980 - GI	Lot#203: 1.0 mm 3 rd Gen 980 - GI] Ļ		12
3	Lot#134: 1.6 mm 3rd Gen 980 - GI	Lot#134: 1.6 mm 3rd Gen 980 - GI]		
4	Lot#166: 1.0 mm 3rd Gen 1180 - GI	Lot#166: 1.0 mm 3rd Gen 1180 - GI]]	Repeatability	
5	Lot#168: 1.6 mm 3 rd Gen 980 - GI	Lot#221: 0.70 mm CR4 GI		ר[
6	Lot#203: 1.0 mm 3 rd Gen 980 - GI	Lot#221: 0.70 mm CR4 GI] [- 2T	
7	Lot#134: 1.6 mm 3rd Gen 980 - GI	Lot#221: 0.70 mm CR4 GI			Heterogeneous	
8	Lot#166: 1.0 mm 3rd Gen 1180 - GI	Lot#221: 0.70 mm CR4 GI			neterogeneous	
9	Lot#168: 1.6 mm 3 rd Gen 980 - GI	Lot#168: 1.6 mm 3 rd Gen 980 - GI	Lot#221: 0.70 mm CR4 GI	Ē		
10	Lot#203: 1.0 mm 3 rd Gen 980 - GI	Lot#203: 1.0 mm 3 rd Gen 980 - GI	Lot#221: 0.70 mm CR4 GI		ЗТ	
11	Lot#134: 1.6 mm 3rd Gen 980 - GI	Lot#134: 1.6 mm 3rd Gen 980 - GI	Lot#221: 0.70 mm CR4 GI		Heterogeneous	į
12	Lot#166: 1.0 mm 3rd Gen 1180 - GI	Lot#166: 1.0 mm 3rd Gen 1180 – GI	Lot#221: 0.70 mm CR4 GI			

CHALLENGE: LOW WELD PENETRATION

Rapid LME

Insufficient weld penetration into the thin mild steel material (discrepant weld)

DOE: WELD PENETRATION

Factor	Levels		
Weld Time	2		
Polarity	2		
Electrode Composition	4		
Weld Force	4		

			Electrode	Weld	Nugget
Run	Weld Time	Polarity	Composition	Force	Pentration
	(ms)	(+:thin on top)	(Top/Bottom)	(kN)	(mm)
1	230	Positive	Class 1/Class 1	1.55	0.05
2	230	Positive	Class 3/Class 3	1.55	0.413
3	230	Positive	Class 3/Class 3	2.45	0.296
4	230	Negative	Class 1/Class 1	2.00	0.212
5	230	Negative	Class 1/Class 1	2.90	0.254
6	230	Negative	Class 3/Class 3	2.90	0.039
7	180	Positive	Class 3/Class 3	1.55	0.154
8	180	Positive	Class 3/Class 3	2.45	0.346
9	180	Positive	Class 1/Class 3	2.45	0.329
10	180	Negative	Class 3/Class 3	2.00	0.501
11	180	Negative	Class 1/Class 3	2.00	0.358
12	180	Negative	Class 1/Class 3	2.90	0.358
13	180	Positive	Class 1/Class 3	1.55	0.212

Identify optimal weld conditions to improve weld penetration

ROBUSTNESS PLOT: WELD PENETRATION

Increase Penetration:

- Weld Time: Low
- Weld Force: High
- Polarity: Thin on Positive
- Electrode: C1/C3 Combo

ROBUSTNESS PLOT: SHEAR TENSION PEAK LOAD

Increase Peak Load:

- Weld Time: No effect
- Weld Force: High
- Polarity: No effect
- Electrode: C1/C3 Combo
- Successfully identified weld conditions to improve weld penetration
- But not able to be confidently applied to all potential stack-ups

HOW TO INTERPRET DATA?

RAPID LME: CRACK INDEX

Stack-Up	Maximum Crack (Total, mm)	Maximum Crack (Excluding Type A, mm)	Crack Index (Total)	Crack Index (Excluding Type A)
1.0mm 3rd Gen 980 + 1.0mm 3rd Gen980	0.59	0.20	0.093	0.013
1.0mm 3rd Gen 980 + 0.7mm CR4	0.77	0.77	0.119	0.064
1.0mm 3rd Gen 980 + 1.0mm 3rd Gen980 + 0.7mm CR4	0.53	0.53	0.253	0.123
1.0mm 3rd Gen 1180 + 1.0mm 3rd Gen 1180	0.96	0.94	1.858	1.655
1.0mm 3rd Gen 1180 + 0.7mm CR4	0.65	0.65	0.480	0.266
1.0mm 3rd Gen1180 + 1.0mm 3rd Gen 1180 + 0.7mm CR4	1.60	1.60	0.857	0.669

$$Crack \, Index = \frac{nL}{Nt}$$

n: number of cracks,

L: average crack length

N: number of examined cross-sections

t: material thickness

E. Winjtes et al. Welding in the World, 2019

LME SUSCEPTIBILITY RATING

Rapid LME is very effective in rating LME susceptibility

HETEROGENEOUS STACK-UPS

- Rapid LME also effectively differentiate the cracking severity in dissimilar stack-ups
- Limitation: schedule not designed for heterogeneous stack-ups; low weld penetration
- The Weld Lobe LME Test is better suited for assessing the potential for LME cracking in complex multi-thickness stack-ups

CRACK INDEX VS. MAXIMUM CRACK DEPTH

SUMMARY

- The Rapid LME Test is best for assessing LME susceptibility of AHSS
 - Quickest, most reliable, and least expensive means for LME susceptibility
 - Grades found susceptible also performed poorly in the Weld Lobe Test
 - Limitations: weld schedules are not designed for heterogeneous stackups, low weld penetration issue
- The Weld Lobe LME Test is better suited for assessing the potential for LME cracking in complex multi-thickness automotive spot welded joints
- Crack index is effective to quantitatively characterize the cracking severity in both homogeneous and heterogenous stack-ups
- Future work will focus on methodology development for LME characterization to establish recommended acceptance criteria

FUTURE WORK: CRACK ACCEPTANCE CRITERIA

- Maximum crack depth?
- Percentage of materials thickness?
- Cracking area?
- Number of cracks?
- Crack index?
- Types of cracks?
- NDT?

WorldAutoSteel, 2020

FOR MORE INFORMATION

Kevin Teng Project Lead General Motors Company Zhenke.Teng@gm.com

Eric McCarty Project Manager Auto/Steel Partnership emccarty@steel.org

More Questions? Meet Kevin at the Auto/Steel Partnership booth after this presentation.

