

EVOLVING THE STEEL STRENGTH -DUCTILITY DIAGRAM: TEMPERATURE AND RATE EFFECTS ON NEW AHSS

Jun Hu, PhD Cleveland-Cliffs Steel

ACKNOWLEDGEMENT

The presenter wishes to acknowledge Ana Araujo, Grant Thomas,

Gill Amrinder, Erik Pavlina, Wei Wu, Kavesary Raghavan, and many

others for their effort and input on this and/or preceding work. The support of Cleveland-Cliffs Steel management for this study is also greatly appreciated.

THE STRENGTH-DUCTILITY DIAGRAM

- 'Strength-Ductility Chart/Diagram'
- The initial version: total elongation (TE) vs.
 yield strength (YS) (Shaw *et al.*, 2002)
- The abscissa evolved to ultimate tensile strength (UTS) (Matlock and Speer, 2006)
- The TE values are obtained using ASTM E8 test samples or converted based on the ISO 2566 standard (Matlock *et al.*, 2010)
- Based on quasi-static tensile test results at room temperature (RT)

AHSS IN THE DIAGRAM

1st generation (GEN1) band: ferrite +
martensite dominant microstructure, a
trade-off between TE and UTS
2nd generation (GEN2): good TE + UTS,

yet limited by cost and joining challenges

- New generation opportunities: De Moor *et al*. (2010) and Fonstein (2015) suggested DP+, TRIP+, Q&P, TWIP+, Med-Mn, and CFB/TBF steels
- Categorization based on UTS x TE values (Davenport, 2017)

NEW AHSS DEV. STRATEGY

• Controlling austenite stability conditions can achieve various strength-ductility

TEMPERATURE SENSITIVITY

- Olson-Cohen theory (1972)
- $M_s < T < M_s^{\sigma}$ (typically subzero): stressassisted martensite nucleation
- $M_s^{\sigma} < T < M_d$ (for general applications): strain-induced martensite nucleation
- $T > M_d$ (for some applications):

transformation stops because the critical stress exceeds the material strength

RESEARCH MOTIVATION

- Tool temperature when stamping DP780: ~180°C (Pereira and Rolfe, 2014)
- Highest temperature of tensile testing on Q&P1180 at 0.5 s⁻¹ exceeded 230°C (Hu and Raghavan, 2018)
- Either stamping rate (order of 10¹ s⁻¹) or crashing rate (order of 10³ s⁻¹) is much higher than the laboratory testing rate (order of 10⁻³ s⁻¹)
- To study the temperature and strain rate effects on the tensile properties of the selected AHSS grades and illustrate such changes in the Steel Strength-Ductility Diagram

TARGET GROUP

• **Q&P1000 (left) and 1200 (right)**, each containing ~14% retained austenite

COMPARISON GROUP (1)

• **DP980 (left) and 1180 (right)**, with conventional ferrite + martensite microstructure

COMPARISON GROUP (2)

- 20 YEARS GDIS
- 2 austenitic steels, coded as AustS-A and -B, 90% austenite yet of different stability

TENSILE PROPERTIES OVERVIEW

• Representative tensile properties of the six selected AHSS grades

TEMP. EFFECTS: TEST SETUP

• Quasi-isothermal heating, tensile testing at 0.001 s⁻¹ nominal strain rate

TEMP. EFFECTS: RESULTS OVERVIEW

- The grades with austenite in the microstructure are more sensitive to the temperature change
- Both Q&P grades exhibit wavy tensile properties with the temperature change
- Both DP grades exhibit comparatively more stable tensile properties
- The 2 AustS grades exhibit completely discrepant temperature dependency due to the different austenite stability

TEMP. EFFECTS: TARGET GROUP

- Q&P1200 is more temperature-sensitive than Q&P1000
- Multiple effects, either opposing or favoring, contribute to such sensitivity:
 - Martensitic transformation: +TE, +UTS
 - Dynamic strain aging (DSA): -TE, +UTS
 - Thermal softening: +TE, -UTS
- The martensitic transformation becomes gradually inactive from 25 to 100°C, but then reactivated from 150 to 250°C

TEMP. EFFECTS: TARGET GROUP

• Similar observations were reported from other Q&P and TRIP steels (Coryell *et al.*, 2013, Min *et al.*, 2016, Zhang *et al.*, 2019), yet the mechanism is still unclear.

TEMP. EFFECTS: COMPARISON GROUP

- DP grades: the TE drops around 100°C is due to the DSA effects
- AustS-A: deformation mechanism evolves; AustS-B: follows the Olson-Cohen theory

RATE EFFECTS: TEST SETUP

• For tensile tests at nominal strain rates 1 – 1000 s⁻¹

RATE EFFECTS: RESULTS OVERVIEW

- Adiabatic heating at elevated strain rates particularly affects the grades with austenite
- Both Q&P grades exhibit a similar UTS x TE valley at 1 s⁻¹
- Both DP grades exhibit comparatively more stable tensile properties
- The 2 AustS grades exhibit completely discrepant rate dependency due to the different austenite stability

RATE EFFECTS: TARGET GROUP

•

- Both Q&P grades exhibit very similar ratedependency
- With the strain rate increasing, the
 adiabatic heat has less time to dissipate,
 which elevates the temperature more
 rapidly: +-TE, +-UTS, while the
 dislocations have less time to pass through
 obstacles: -TE
- Above 1 s⁻¹, in the 'dynamic-low' range, additional forces are needed to overcome the inertial forces in the material: +UTS

RATE EFFECTS: TARGET GROUP

• The retained austenite in the Q&P grades has finished transformation before the adiabatic heat accumulates. Similar observation was reported by Choi *et al.* (2006).

RATE EFFECTS: COMPARISON GROUP

- DP grades: similar yet less accentuated effects as the Q&P grades
- The martensitic transformation in AustS-A is more exothermic than that in AustS-B

CONCLUSIONS

- The critical role of the Steel Strength-Ductility Diagram in categorizing and developing the new AHSS grades is acknowledged.
- The laboratory test results are limited in representing the evolving tensile properties of the new AHSS grades, especially those with austenite in their microstructures, under the practical thermal and strain-rate conditions.
- Focusing on the two Q&P steels and comparing with the selected DP and austenitic steels, this work illustrated in the Steel Strength-Ductility Diagram how diverse the temperature and strain-rate dependencies of different AHSS grades can be.
- Multiple material effects were highlighted, although some of them, such as the martensitic transformation reactivation, have not been yet fully understood.

FOR MORE INFORMATION

Jun Hu, PhD Cleveland-Cliffs Steel Jun.Hu@clevelandcliffs.com Grant Thomas, PhD

Cleveland-Cliffs Steel

Grant.Thomas@clevelandcliffs.com

JOM, Vol. 73, No. 11, 2021 https://doi.org/10.1007/s11837-021-04900-x © 2021 The Minerals, Metals & Materials Society

ADVANCED HIGH-STRENGTH STEELS

Evolving the "Banana Chart": Temperature and Strain Rate Effects on Tensile Properties of New-Generation Advanced High-Strength Steels

