GREAT DESIGNS IN

THE DIC REVOLUTION IN METAL PROPERTY CHARACTERIZATION

Dr. Thomas B. Stoughton GM Global R&D Center, GM Tech Fellow

MOTIVATION

1) Why is a revolution in material testing needed?

2) What is revolutionary about Digital Image Correlation?

3) What is the potential of a SINGLE Uniaxial Tension Test?

Example of DP 980

HISTORY OF CONSTITUTIVE MODELS

- 1) Von Mises Yield Model (1913) •••••••••• Requires only a single hardening law
 - 2) Hill 1948 Fully Anisotropy Model ... also requires R₀, R₄₅, R₉₀
- 3) Barlat 2000-2d Model also requires YS₀, YS₄₅, YS₉₀ and YS_{EB}, and R_{EB}

TRADITIONAL UNIAXIAL TENSION TEST

GDIS

Standard Results

- 1) 0.2% Offset Yield Stress
- 2) Ultimate Tensile Strength
- 3) Uniform Elongation
- 4) Total Elongation
- 5) Hardening Behavior
- 6) Elastic Modulus
- 7) Proportional Limit

Add a Width Strain Gauge

- 8) R Value
- 9) Poisson Ratio

Additional Needs

- 10) m Value (jump tests)
- 11) YM degradation (load/unload)
- 12) Property variation (repeats)

HOW TO BEST USE DIC

Standard Results

Multiple Points

- Young's Modulus 1)
- **Ultimate Tensile Strength** 2)
- **Uniform Elongation** 3)
- Hardening Behavior 4)
- **Total Elongation** 5)

Includes Width Strain Gauge

- **R** Value 6)
- Poisson Ratio

Implicitly Includes Multiple Loading Conditions

- 8) m Value (jump tests)
- YM degradation (load/unload) 9)
- Property variation (repeats) 10)

camera coordinate system

X, Y, Z

GDIS

BOD

R VALUE MEASUREMENT

R VALUE MEASUREMENT

HOW TO BEST USE DIC

Standard Results

Multiple Points

- Young's Modulus 1)
- **Ultimate Tensile Strength** 2)
- **Uniform Elongation** 3)
- **Hardening Behavior** 4)
- **Total Elongation** 5)

Includes Width Strain Gauge

- **R** Value 6)
- Poisson Ratio

Implicitly Includes Multiple Loading Conditions

- 8) m Value (jump tests)
- YM degradation (load/unload) 9)
- Property variation (repeats) 10)

camera coordinate system

X, Y, Z

0080

USEFUL INFORMATION BEYOND "UE"

DETECTION OF ONSET OF LOCALIZED NECKING GDIS

000

DETECTION OF ONSET OF LOCALIZED NECKING GDIS

Signature of Localized Neck

- 1) One very high positive curvature at the valley of the candidate groove in the last DIC frame.
- 2) Two high NEGATIVE peak curvatures at a location within 2*sheet thickness of the location of the positive peak, corresponding to the two shoulders on the drop into the neck groove.
- 3) Rapid drop in the peak curvatures from frame to earlier frame to levels of curvature consistent with calculated curvatures at points outside the candidate groove (noise level).

000

CURRENT APPLICATIONS OF DIC TESTING

DIC technology has been aggressively and successfully applied to

- Uniaxial Tension Tests
 - Measure R Value to High Strain
 - Average
 - Std Deviation
 - Evolution
 - Measure Hardening Law to High Strain
 - Average
 - Std Deviation
 - Strain-Rate Sensitivity
 - Young's Modulus Degradation
 - Detect Onset of Localized Necking
 - Enables accounting of Nonlinear Strain Path Effect
- Bulge Tests
- Nakajima Tests
- Marciniak Tests
- Applying to other tests...

FUTURE

- 1) Proposal to adopt industry standard for 2 Camera DIC Data Acquisition for all ASP and Supplier/OEM material testing
 - Propose application to all 'standard' tests
 - Propose 'adaption' to all non-standard tests
- 2) Methods undergoing testing/evaluation at CAL/NIST
- 3) Propose support of a National Database based on DIC Data

IN CLOSING...

The objective of simulation is to ELIMINATE physical testing...

Can we achieve this if we compromise on the definition and calibration of our Material Models?

> Can we achieve this if we compromise on Material Testing?

GDIS

ACKNOWLEDGEMENTS

JUNYING MIN, JOHN CARSLEY, JEONG-WHAN YOON, MARK IADICOLA, SANTE DICECCO, FORMERLY GM R&D, TONGJI UNIVERSITY FORMERLY GM R&D, NOVELIS KAIST & DEAKIN UNIVERSITY CAL/NIST UNIVERSITY OF WATERLOO

FOR MORE INFORMATION

Thomas B. Stoughton General Motors Global R&D thomas.b.stoughton@gm.com

GREAT DESIGNS IN

THANK YOU

GREAT DESIGNS IN

SUPPORTING INFORMATION

UNIAXIAL TENSION DATA FOR SIMULATION

- 1) Young's Modulus & Poisson Ratio
 - Anisotropy of Elasticity --- Typical 10-20% variation affects spring-back proportionally
 - Degradation of YM with strain Requires load/unload/reload test
- 2) Proportional Limit (Elastic-to-Plastic Transition) --- 0.2% Offset Yield Stress
- 3) Hardening Law (True Stress vs Plastic Strain) ------ YS, UTS, UE → K, n, e0
 - Extension beyond max load •--- Needed if expecting to predict conditions up to fracture
 - Kinematic Hardening
 Anisotropic Hardening
 Requires tests in at least 3 loading orientations
 - Strain rate effects Requires jump test or multiple tests
- 4) R Value (Ratio of Plastic Strain Rates)
- 5) Onset of Localized Necking -
- 6) Local Fracture Strain

Not detectable

HISTORY OF CONSTITUTIVE MODELS

The ultimate objective of simulation is to ELIMINATE physical testing...

Can we achieve this if we compromise on the definition and calibration of our Material Models?

TRADITIONAL UNIAXIAL TENSION TEST

GDIS

Standard Results

- 1) 0.2% Offset Yield Stress
- 2) Ultimate Tensile Strength
- 3) Uniform Elongation
- 4) Total Elongation
- 5) Hardening Behavior
- 6) Elastic Modulus
- 7) Proportional Limit

Add a Width Strain Gauge

- 8) R Value
- 9) Poisson Ratio

Additional Needs

- 10) m Value (jump tests)
- 11) YM degradation (load/unload)
- 12) Property variation (repeats)

- Additional Tension Tests

What if we could get a handle on this from a SINGLE Uniaxial Tension Test?

IS UNIFORM ELONGATION UNIFORM?

EXAMPLE OF CSV FILE CONTENT

GDIS

	А	В	С	D	E	F			
1	X [mm]	Y [mm]	Z [mm]	exx [1] - Hencky	eyy [1] - Hencky	exy [1] - Hencky			
2	0.000	-25.000	0.019	0.00000	0.00000	0.00000			
3	0.000	-25.001	0.018	-0.00009	-0.00009 -0.00002				
4	-0.001	-25.000	0.020	-0.00002	-0.00002 0.00011				
5	0.001	-24.998	0.019	0.00004	-0.00012	-0.00007			
6	0.000	-24.999	0.017	-0.00026	-0.00020	-0.00011			
7	0.000	-25.001	0.016	-0.00002	0.00000	-0.00004			
8	0.000	-24.998	0.018	-0.00011	-0.00023	-0.00001			
9	0.000	-25.000	0.019	0.00002	0.00002	-0.00006			
10	0.000	-25.008	0.016	-0.00007	0.00003	-0.00004			
11	0.001	-25.014	0.013	-0.00009	0.00015	-0.00017			
12	0.000	-25.018	0.012	-0.00014	0.00021	-0.00010			
12	1 st of 201 Points								
580	-0.06749	-31.9836	-0.04415	5 -0.0332459 0.0786817 -		-0.000278133			
581	-0.06814	-31.9976	-0.04339	9 -0.0331969 0.0786263 -0		-0.000335343			

581	-0.06814	-31.9976	-0.04339	-0.0331969	0.0786263	-0.000335343	
582	-0.07185	-32.0133	-0.04352	-0.0330825	0.0786386	-0.000235271	
583	-0.07418	-32.0291	-0.03997	-0.0333873	0.0785958	-0.00036776	
584	-0.07513	-32.0416	-0.04367	-0.033368	0.0784631	-0.000312553	
585	-0.07954	-32.0598	-0.0395	-0.0332215	0.0783598	-0.000227205	
586	-0.08045	-32.0748	-0.04288	-0.0331713	0.0782322	-0.000263781	
587	-0.08527	-32.0915	-0.0449	-0.0333184	0.0784897	-0.000232748	
588	-0.0849	-32.1053	-0.04264	-0.0331525	0.0783864	-0.000361529	
589	-0.0867	-32.1204	-0.0467	-0.0330774	0.0782752	-0.000255177	
590	-0.0921	-32.1386	-0.04722	-0.0331462	0.0782398	-0.000279237	
591							
U00FeDP980 R01T1.405W12.70-L				(+)			

	LT	ATK	ATL	ATM	ATN	ATO	ATP	ATQ	ATR	ATS
	- Hen	Count	Time_1	Time_0	Dev2/ai0	Dev2/ai1	Dev2/ai2	Dev2/ai3	acement_	Force_(kN)
	'5E-18	10	132.85	132.85	-2.536	0.0033	-0.0003	0.0004	-25.3598	0.033
	00013	41	148.35	148.35	-2.535	0.0013	0.0004	-0.0006	-25.35	0.013
	00012	42	148.85	148.85	-2.5353	-0.0009	-0.0006	-0.0013	-25.3533	-0.009
	'6E-05	43	149.35	149.35	-2.536	0.0017	-0.0003	-0.0013	-25.3598	0.017
	00025	44	149.85	149.85	-2.5344	0.0072	0.0004	-0.0009	-25.3435	0.072
	0E-05	45	150.35	150.35	-2.5334	0.0072	0	-0.0006	-25.3338	0.072
	9E-05	46	150.85	150.85	-2.5347	-0.0019	-0.0003	-0.0003	-25.3468	-0.019
	00013	47	151.35	151.35	-2.5344	0.0056	0	-0.0006	-25.3435	0.056
	00018	48	151.85	151.85	-2.5334	0.0377	0	0	-25.3338	0.377
	00014	49	152.60	152.60	-2.5334	0.0611	-0.0013	0.0004	-25.3338	0.611
	00014	50	153.10	153.10	-2.5321	0.0883	-0.0006	0	-25.3208	0.883
					→ Ti	me, Lo	oad, M	isc. Da	ata	
	00024	618	673.20	673.20	-1.7913	1.5589	-0.0019	0.0007	-17.9127	15.589
	00022	619	674.20	674.20	-1.7887	1.545	-0.0013	-0.0006	-17.8868	15.450
	00028	620	675.20	675.20	-1.7877	1.5326	0.0004	-0.0003	-17.877	15.326
	00028	621	676.20	676.20	-1.7861	1.5307	-0.0013	-0.0009	-17.8608	15.307
	.0003	622	677.20	677.20	-1.7854	1.5096	-0.0003	-0.0003	-17.8543	15.096
	00022	623	678.20	678.20	-1.7841	1.5083	-0.0006	0.0007	-17.8413	15.083
	00026	624	679.20	679.20	-1.7822	1.4869	-0.0003	-0.0016	-17.8218	14.869
	.0002	625	680.20	680.20	-1.7812	1.4781	-0.0009	0	-17.8121	14.781
	7E-05	626	681.20	681.20	-1.7789	1.4645	-0.0009	-0.0013	-17.7894	14.645
	00026	627	682.20	682.20	-1.7783	1.444	0.0004	-0.0003	-17.7829	14.440
	00034	628	683.20	683.20	-1.7763	1.4349	-0.0003	-0.0009	-17.7634	14.349

÷ •

PROPOSED DIC FILE NAMING CONVENTION

4 Part Multi-Character Suffix Code U45Fe_DP1180_..._RnnnTt.tttWww.ww-L.csv '-L': File defines a section running down the longitudinal axis of the specimen; other recognized codes are '-S', '-R', '-T', and '-W' Required ww.ww defines the gauge width of the uniaxial specimen Required t.ttt defines the thickness of specimen to appropriate # of digits nnn digits define the repeat test number ID (required when t.ttt is the same for 2 tests) User defined material name (may include other details of the test in a complex DOE) **5** Character Prefix Code

1st Character : BUMNVCS Code : <u>Bulge</u>, <u>Uniaxial</u>, <u>Marciniak</u>, <u>Nakajima</u>, <u>V</u>-Bend, <u>Cruciform</u>, <u>Shear</u> Character 2&3 : Two-digit angle of Major Loading Axis to the RD of the sheet Character 4&5 : Chemical code of Primary Element (Fe, AL, or Mg) (used to initialize elastic properties to improve automation of the elastic fitting)