GREAT DESIGNS IN

AHSS REPAIRABILITY

Sriram Sadagopan
ArcelorMittal
Group Manager, Automotive Product Applications

AUTO/STEEL PARTNERSHIP PROJECT TEAM MEMBERS

JPC Project Mentor: Jason Balzer, Ford Motor Company

Project Leader: Min Kuo, ArcelorMittal
Project Manager: Michael White, Auto/Steel Partnership

Project Team Members:

- Sriram Sadagopan, ArcelorMittal
- Padma Durbha, ArcelorMittal
- Mike Palko, Ford Motor Company
- Gerry Bonnani, Ford Motor Company
- David Rigg, General Motors Co.
- Mark Szlachta, General Motors Co.
- Harminderpaul Grover, General Motors Co.
- Rob Kaminski, Nucor Corporation
- Dean Kanelos, Nucor Corporation
- Weiping Sun, Nucor Corporation
- Justin Hunt, Stellantis
- Hokook Lee, POSCO America

PROJECT GOALS

The purpose of this project was to evaluate various weld repair processes and to provide joint test data for use by OEMs

An Auto/Steel Partnership Repairability Team Project

PROJECT APPROACH

- Using coupon test assemblies fabricated from various grades of 3rd GEN AHSS, a variety of repair process joints were destructively tested. The resulting data can be used by OEMs to update repair process strategies
- 3rd GEN 980 uncoated, 3rd GEN 980 GI coated, and 3rd GEN 1180 GI were tested
- Repair processes investigated include: resistance spot welding (RSW), gas metal arc welding (GMAW), gas metal arc brazing (GMAB), and mechanical fastening
- Production and service adhesives were also tested
- Tests include shear tension and cross tension quasi-static, shear tension fatigue, cross-sections for microscopy and metallurgical analysis and cross-sections

PROJECT RESULTS | TYPICAL JOINT AND CROSS SECTION PHOTOS

1.4 mm 3rd Gen 980 - uncoated (Lot\#152): RSW (Production)

RSW
(Production)

RSW (Production) with production adhesive

PROJECT RESULTS | TYPICAL JOINT AND CROSS SECTION PHOTOS

1.4 mm 3 rd Gen 980 - uncoated (Lot\#152): RSW (Service)

RSW
(Service)

RSW (Service) with service adhesive

PROJECT RESULTS | TYPICAL JOINT AND CROSS SECTION PHOTOS

1.4 mm 3rd Gen 980 - uncoated (Lot\#152): GMAW and GMAB

GMAW Plug

GMAB Plug

GMAB Slot

PROJECT RESULTS | TYPICAL JOINT AND CROSS SECTION PHOTOS

1.4 mm 3rd Gen 980 - uncoated (Lot\#152): Hemlok Rivet

Hemlok Rivet with production

Hemlok Rivet with service
adhesive SECTION PHOTOS
1.4 mm 3rd Gen 980 - HDGI (Lot\#156): RSW (Production)

RSW (Production)

RSW (Production) with production

PROJECT RESULTS | TYPICAL JOINT AND CROSS SECTION PHOTOS

1.4 mm 3rd Gen 980 - HDGI (Lot\#156) : RSW (Service)

RSW
(Service)

RSW (Service) with service adhesive

PROJECT RESULTS | TYPICAL JOINT AND CROSS SECTION PHOTOS

1.4 mm 3rd Gen 980 - HDGI (Lot\#156) : GMAW and GMAB

GMAW Plug

GMAB Plug

GMAB Slot SECTION PHOTOS
1.4 mm 3rd Gen 980 - HDGI (Lot\#156): Hemlok Rivet

Hemlok Rivet with production

Hemlok Rivet with service adhesive

PROJECT RESULTS | TYPICAL JOINT AND CROSS SECTION PHOTOS

1.4 mm 3rd GEN 1180 - HDGI (Lot\#165): RSW (Production)

RSW
(Production)

RSW (Production) with production adhesive

PROJECT RESULTS | TYPICAL JOINT AND CROSSSECTION PHOTOS

1.4 mm 3rd GEN 1180 - HDGI (Lot\#165): RSW (Service)

RSW (Service)

RSW (Service) with service

PROJECT RESULTS | TYPICAL JOINT AND CROSS SECTION PHOTOS

1.4 mm 3rd GEN 1180 - HDGI (Lot\#165): RSW (Service)

GMAW Plug

GMAB Plug

GMAB Slot

PROJECT RESULTS | TYPICAL JOINT AND CROSS SECTION PHOTOS

1.4 mm 3rd GEN 1180 - HDGI (Lot\#165): Hemlok Rivet

Hemlok Rivet with production

Hemlok Rivet with service adhesive

PROJECT RESULTS | JOINT PEAK LOAD DISPLACEMENT PLOTS

PROJECT RESULTS | JOINT PEAK LOAD DISPLACEMENT PLOTS

PROJECT RESULTS | JOINT PEAK LOAD COMPARISON BAR CHART

Shear Tension Comparison For All Types

PROJECT RESULTS | JOINT PEAK LOAD COMPARISON BAR CHART

Cross Tension Comparison For All Types

Error bars indicate minimum and maximum peak loads for each group

PROJECT RESULTS | TYPICAL FRACTURE PHOTOS

button pull - both
sheets/cohesive separation

interfacial

interfacial/cohesive separation

PROJECT RESULTS| TYPICAL FRACTURE PHOTOS SHEAR \& CROSS TENSION

980 3rd GEN Uncoated (Lot 152), ST

GMAW

weld pullout - top sheet

1180 3rd GEN HDGI (Lot 165), CT

GMAB

braze fracture

980 3rd GEN Uncoated (Lot 152), CT

weld pullout - both sheets

980 3rd GEN HDGI (Lot 156), ST

PROJECT RESULTS | TYPICAL FRACTURE PHOTOS

Structural Mechanical Rivet

980 3rd GEN Uncoated (Lot 152), ST

rivet separation

980 3rd GEN Uncoated (Lot 152), CT

rivet separation/cohesive separation

PROJECT CONCLUSIONS AND RECOMMENDATIONS

- For materials evaluated in this project, appropriate repair methods can be selected
- Adhesive increased shear tension peak loads but had little effect on cross-tension peak loads
- Production adhesive joints had higher peak loads compared to service adhesive joints for both shear tension and cross tension
- LME cracking was observed in the 3rd GEN 1180 spot welds, both production and repair welder
- LME observed in the 3rd GEN 980 - HDGI service spot welds
- Significant LME cracking was observed in the GMAW plug and GMAB slot joint configurations:
- 1.4 mm 3rd GEN 980 - HDGI (Lot\#152) GMAW plug
- 1.4 mm 3rd GEN 1180 - HDGI (Lot\#165) GMAW plug, GMAB plug and GMAB slot

FOR MORE INFORMATION

Sriram Sadagopan

ArcelorMittal
sriram.sadagopan@arcelormittal.com

Michael White
Auto/Steel Partnership mwhite@steel.org

