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• Develop CAE predictive capabilities for formability and crash performance of 
3rd Gen AHSS (980 and 1180 tensile strength) structural components

• Confirm capability on a mid-size SUV B-pillar design*
*      Separate GDIS presentation: “Formability and fracture Validation of 3rd Gen steels”,       

Prof. Cliff Butcher 
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Correlation?

Tensile tests provide only limited correlation with local material behavior for structural components
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Pre-straining of specimen prior to bend operation
Represents a non-proportional strain path which affects 
subsequent material behavior

OBJECTIVES

V-Bend

VDA 238-100 tight radius bend test is simple and fast to perform but has limitations 
for ductile alloys or thin sheet

Objective: Identify alternative fracture detection method to reliably determine material 
failure from inconclusive results in the V-Bend test 

Experimental V-Bend study is discussed in separate GDIS presentation “Effect of AHSS Gauge 
and Punch Radius in Three-point Bending”, Kenneth Cheong

Load drop as unique fracture metric 
Occasional reduction in punch force without material rupture

Ref. 1
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MATERIAL SELECTION
Seven automotive steel grades with varying ductility levels were considered  
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Yield Stress 
(0.2% offset) (MPa)

Ultimate Tensile 
Stress (MPa)

Uniform Elongation 
UE (%)

Total Elongation
TE (%)

270 Mild steel, 1.6 mm 256 (±1) 311 (±2) 31.1 (±2.8) 43.2 (±1.0)
590R AHSS, 1.4 mm 490 (±2) 671 (±1) 13.7(±0.1) 23.8 (±0.4)
3rd Gen. 980, 1.4 mm 681 (±8) 1033 (±10) 18.0 (±0.5) 24.9 (±0.6)
3rd Gen. 1180 V2, 1.4 mm 1047 (±10) 1219 (±5) 10.3 (±0.3) 16.2 (±0.1)
DP980, 1.2 mm 735 (±2) 1065 (±3) 7.8 (±0.2) 14.1 (±0.6)
3rd Gen. 1180 V1, 1.4 mm 950 (±12) 1251 (±8) 8.4 (±0.2) 13.7 (±0.5)
PHS1500, 1.2 mm 1144 1571 5.5 11.0

High ductility

Moderate ductility

Low ductility
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PLANE STRAIN FRACTURE TESTS
All tests induce failure under plane strain tension 
Linearity of strain path and magnitude of apparent fracture strain greatly vary  
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Tight notch

Plane strain notch

V-Bend

Only V-bend provides approximate proportional 
loading – Necking instability is suppressed

Nakazima
Undeformed specimen

Die

Binder

Hemispherical 
punch

Marciniak
Undeformed specimen

Carrier blank

Die

Binder

Cylindrical punch

Note: Rupture strains in necking-induced tests can be measured post-test (GDIS 2017)
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V-BEND TEST FRAME
Test frame utilized for this study was inverted and equipped with DIC 
Fracture strain can be retrieved from the experiment without inverse FEA
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Rollers

Cameras for DIC
strain measurements 

Punch (stationary)

Specimen

Material layers below neutral axis are in plane 
strain compression 

Material layers above neutral axis are in plane 
strain tension 

Severe through-thickness stress-strain gradient suppresses necking 

MM

Ref. 2
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CHALLENGES WITH V-BEND TEST
VDA 238-100 recommends failure identification from reduction in punch force  
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Clear signs of fracture for the 3rd Gen 980 
No fracture on convex specimen side for the 270 Mild steel  “False positive”
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MECHANICS OF V-BEND TEST
What causes the load to reduce in the absence of fracture?
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Fy,1 = Punch force

Fres,1 = Fy

Fx,1 = 0
α1

3-point bending
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MECHANICS OF V-BEND TEST
What causes the load to reduce in the absence of fracture?
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Fres,2

Fx,2

Fy,2 = Punch force
α

α2

Transition 3-point 4-point bending

Fy,1 = Punch force

Fres,1 = Fy

Fx,1 = 0
α1

3-point bending
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MECHANICS OF V-BEND TEST
What causes the load to reduce in the absence of fracture?
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Fres,3

Fx,3

Fy,3 = Punch forceα

α3

4-point bending

Punch force will drop eventually due to kinematic 
boundary conditions even without material rupture
Not considered in the VDA 238-100 specification … 

Fy,1 = Punch force

Fres,1 = Fy

Fx,1 = 0
α1

3-point bending



BENDING MOMENT
Bending moment can be approximated from geometric considerations
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Ref. 3
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ADOPTION OF BENDING MOMENT 
Adoption of bending moment works well for steel grades with clear fracture
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In the case of “false positives”, the bending moment provides remarkable 
improvement over the VDA 238-100 specification – But drops at large bend 
angles (>160°)
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CHALLENGES OF BENDING MOMENT 
Low hardening materials have approximately constant bending moment 
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Incremental bending moment can have severe 
fluctuations about zero
Reliable identification of failure threshold is 
challenging



STRESS-BASED DETECTION METHOD
Bending moment is non-intuitive compared to punch force or stress 
Stress integration of cross-section complex (load reversal, plasticity model, etc.)
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Improvement over bending moment but still challenges with low-hardening grades 
Increase resolution by accounting for thinning of the cross-section   

Idea: Use closed-form solution for rigid, perfectly-plastic material to define stress
metric  



V-bend frame at the University of Waterloo has a stationary punch 
 Thinning of the cross-section can be measured from out-of-plane displacement in DIC
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THINNING 
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For VDA test frames without DIC, empirical fit for the engineering thinning strain
Future work: consider bend severity in empirical thinning equation 
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STRESS METRIC WITH THINNING 
What is the effect of thinning upon the resolution of the stress metric? 
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DIC thinning and empirical thinning method provide same fracture angle for 
high hardening 980 3rd Gen AHSS
Enhanced resolution for low-hardening PHS1500. Variation in stress metric 
magnitude but robust fracture detection



Comparison of recorded failure by the stress metric considering: 
(i) constant thickness
(ii) empirical thickness
(iii) instantaneous thickness from DIC

IMAGE PLACE
HOLDER

APPLICATION STRESS METRIC – BEND ANGLE 
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Maximum derivation of 1° when using the empirical thickness versus the thickness 
from DIC 



No additional complexity (no DIC required, no new parameters) introduced in stress 
metric but provides increased confidence to identify false positives 

APPLICATION STRESS METRIC – STRAIN 
Good agreement between the empirical and the DIC thickness also reflected in 
the major strain 
Max. deviation of 0.01 strain

19



Stress metric remedied challenges encountered for steel grades with low 
hardening rate
Reduction in stress metric occurs at large bend angles (>160°)
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STRAIN-RATE BASED DETECTION METHOD
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Stress metric

In the case of fracture, strain 
accelerates

In the absence of fracture, strain rate 
decreases

Consideration of the strain rate evolution since independent of punch force 
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MODIFIED LINEAR BEST FIT METHOD
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(1) Unstable line fit: Least squares optimization  

(2) Stable line fit
Start: Max. tensile strain on outer surface at 

onset of yielding 
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End: Corresponding strain rate at a 2% offset of
peak punch force  
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Need criterion to detect abrupt acceleration (fracture) or deceleration 
(folding over)
Refine Linear Best Fit (LBF) Method by Volk and Hora (2011) for forming limit 
strains

Ref. 4 and 5



Viable concern in the V-bend tests since inner bend 
radius no longer conforms to the punch tip radius 

IMAGE PLACE
HOLDER

PUNCH LIFT-OFF 
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Out-of-plane displacement from DIC indicates when 
punch lift-off occurs

Punch force drops at a VDA bend angle of 127° whereas punch lift-off occurs at 144°



IDENTIFICATION OF FAILURE THRESHOLD
V-bend tests on 3rd Gen 980 without white background paint provide a direct 
view on specimen substrate surface   
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Mod. LBF Method

VDA 60 N load drop

VDA 1% load drop Bending moment 1% drop

Stress metric 1% drop VDA 48% load drop

No hairline cracks

No hairline cracks

Hairline crack

Minor cracks

Minor cracks

Cracks
Threshold dependent upon application: bending-dominated forming operation or 
fracture? 

Ref. 6
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COMPARISON OF FAILURE DETECTION METHOD
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Folding over detectedApplication: bending-dominated forming operations

VDA 238-100 specification 
works well for high-strength 
steels with low bend angles 
(<60°)

Bending moment works well 
for steel grades with 
appreciable hardening 

Strain rate method is 
occasionally more 
conservative but can detect 
folding over 

Difference with respect to the stress metric
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• For ductile steel grades or thin materials with low bend severity, reliance upon 
the punch force as unique fracture metric might lead to inconclusive results 
and require additional verification to confirm material failure 

• Adoption of the bending moment-based failure metric provides some 
improvement over VDA 238-100 failure detection but selection of a robust 
failure threshold might be challenging for material with low hardening rates 

• The stress-based failure metric accounts for thinning of the cross-section 
either through DIC or an empirical equation. No new parameters or DIC 
required.

• Consideration of the major strain rate can shed light into potential folding over

• Punch lift-off can be identified by tracking the out-of-plane displacement using 
DIC and was found to occur past the recorded drop in the punch force at VDA 
bend angles of about 145°
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