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PROJECT STRUCTURE

Full-scale evaluation of CAE capabilities of 3rd Gen AHSS 
from Forming-to-Fracture

Three 3rd Gen steels (980 & 1180 MPa nominal strength) were supplied 

to AISI Sample Bank

Material identification removed and sent to UW for formability and 

fracture characterization (no microstructural characterization)

Design representative B-pillar for mid-sized SUV, perform forming trials, 

and impact test
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PROJECT GOALS

Characterize mechanical properties of 3rd Gen steels provided by AISI 

Apply optimized fracture testing methodology established for AHSS (GDIS 
2017 & GDIS 2018) to 3rd Gen AHSS (GDIS 2019)

Formability characterization and prediction of 3rd Gen AHSS to integrate 
into fracture CAE toolkit from forming-to-crash

Design forming process of full-size B-pillar for mid-size SUV using CAE 
toolkit with Bowman Precision Tooling and Honda R&D Americas 

Perform dynamic B-pillar impact tests to evaluate CAE toolkit and 
methodology to design 3rd Gen steel components (GDIS 2022)



MATERIAL PERFORMANCE 
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V-Bend tests (plane strain tension)

Gap: 2*th + 0.5 mm

Grade

Nominal 

sheet 

thickness 

(mm)

Yield 

strength 

(MPa)

Ultimate Tensile 

Strength (MPa)

Yield-to-UTS 

ratio

Uniform 

Elongation UE 

(%)

Total 

Elongation TE 

(%)

590R 1.4 490 (±2) 671 (±1) 0.73 19.9 (±0.3) 23.7 (±0.4)

DP980 1.2 735 (±2) 1065 (±3) 0.69 7.8 (±0.2) 13.7 (±0.5)

3rd Gen 980 1.4 681 (±8) 1034 (±10) 0.66 18 (±0.5) 24.9 (±0.6)

DP1180 1.0 843 (±0) 1216 (±8) 0.69 6.5 (±0.4) 11.5 (±0.2)

3rd Gen 1180 V1 1.4 950 (±12) 1251 (±8) 0.76 8.4 (±0.2) 14.1 (±0.6)

3rd Gen 1180 V2 1.4 1043 (±4) 1225 (±8) 0.85 10.7 (±0.4) 16.4 (±0.3)

DP1180 retrieved from Numisheet 2022 Benchmark: 

https://www.tms.org/portal/MEETINGS___EVENTS/TMS_Meetings___Events/Upcoming_TMS_Meetings/NUMISHEET2021/benchmarkTests/portal/Meetings___Events/2021/NUMISHEET2021/
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Constitutive Characterization
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CHARACTERIZATION OF CHORD MODULUS  
Chord modulus can be critical for springback: Perform loading-unloading 
tests
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MATERIAL ANISOTROPY
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Anisotropy of studied 3rd Gen steels was mild and 
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Assumption of von Mises can be reasonable 
approximation depending on CAE objectives

Ref. 3



9

CALIBRATION HARDENING MODEL

Isotropic hardening response obtained using tensile & shear tests

Methodology in Rahmaan et al. (2017) and refined in Noder & Butcher (2019)

Simple Shear After Tensile UTS

Tensile Test until UTS

Ref. 4 and 5
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RATE SENSITIVITY 
Intermediate and high-rate tensile tests at ~ 1, 100, and 1000 s-1
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COMPARISON OF STRAIN RATE EFFECTS 

Strain rate sensitivity of 3rd Gen 1180 V2 was mild compared to 3rd Gen 1180 V1
Rate sensitivity of V2 was about 3x lower than V1
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EVALUATION HARDENING MODEL 
Solid tensile simulations using fully-integrated EL, 0.3 mm mesh size in LS-DYNA

Global stress-strain response in very good agreement without inverse FEA

Local strains slightly deviate for 3rd Gen 1180 V1 but localization is also different
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Formability Characterization
and Prediction
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MARCINIAK TESTS FOR FLC CHARACTERIZATION

Marciniak tests for in-plane stretching under plane stress 

Consistent with physical framework of selected analytical FLC model

Approximately linear strain path and plane stress in Marciniak tests
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IN-PLANE FORMING LIMIT STRAINS

Global formability similar for 1180 MPa strength steels
→ Slightly higher FLC0 and biaxial limit strain for 3rd Gen 1180 V2

Limit strains of 3rd Gen 980 superior to DP980, 3rd Gen 980 FLC comparable to 590R 
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ANALYTICAL FLC PREDICTION

Stretch side of the FLC: Bressan-Williams (BW) through-thickness shear model 

Necking along zero-extension angle through the sheet thickness 
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ANALYTICAL FLC PREDICTION

Simple and deterministic BWx model can accurately predict in-plane forming 
limits for studied DP and 3rd Gen steels 
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Fracture Characterization
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Major fracture 
strain

Minor fracture 
strain

Uniaxial tension

Equi-biaxial tension

Plane strain tension

Simple shear

a)

Equivalent 
fracture strain

Stress 
triaxiality

Simple shear

Uniaxial tension

Plane strain tension

Equi-biaxial tension

b)

OVERVIEW FRACTURE CHARACTERIZATION
Selection of 4 plane stress experiments to characterize material failure under 
primary stress states
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FRACTURE IN SIMPLE SHEAR

Major strain

3rd  Gen 980

Shear performance of DP and 3rd Gen steels appears to be comparable

Potential for premature edge fracture in shear tests but not obvious in tests
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FRACTURE IN UNIAXIAL TENSION

DP980 showed higher edge formability compared to grade of 3rd Gen 980 on project 

Higher hardening rate of 3rd 980 might cause higher stress differential between phases
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FRACTURE IN PLANE STRAIN TENSION

Inverted VDA 238-100 V-Bend frame equipped with DIC utilized

Comparable performance of 3rd Gen 1180 V2 to DP980

Fracture performance between 3rd Gen steel of same nominal strength can vary 

markedly  
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FRACTURE IN BIAXIAL STRETCHING

Superior performance of 3rd Gen 1180 V2 over V1

Comparable to performance of DP980

Decreasing punch radius
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PLANE STRESS FRACTURE LOCI OF AHSS 

Plane strain performance is critical for structural performance

→ 1180 grades: 3rd Gen can be similar to DP or significantly better
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Similar fracture strains between the optimized DP980 and 3rd Gen 980

→ Formability of 3rd Gen 980 was markedly better than DP980 for this project
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LOCAL VS. GLOBAL FORMABILITY

3rd Gen 1180 V1 and V2 had similar global formability with markedly superior 

local formability for the 3rd Gen 1180 V2 
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POTENTIAL OF 3RD GEN STEELS

With respect to mechanical performance in forming and fracture: 

→ 3rd Gen 1180 V2 has potential to replace current DP980 steel
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Application to B-Pillar 
Technology Demonstrator
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APPLICATION TO B-PILLAR TECHNOLOGY DEMONSTRATOR

Developed with HRA, UW and 

Bowman Precision Tooling

Successful forming and 

proof-of-concept for CAE 

toolkit!

Not a production B-pillar, is 

representative technology 

demonstrator

Modify geometry of hot stamped TWB 

B-pillar for mid-sized SUV to 3rd Gen
3rd Gen 980

3rd Gen 1180

Ref. 11
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RESEARCH SCOPE
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Ref. 11
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FORMING TRIALS AT BOWMAN
Tooling design, fabrication, stamping and part scanning by Bowman precision tooling

• Simpac 1500-ton Tryout press (2.5 m x 6 m)

• 5-axis CNC machining of B-pillar tooling

• Autoform used to design B-pillar tooling and springback compensation

Ref. 11
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Forming simulations predicted that 3rd Gen 980 forms successfully

Forming trials were consistent with simulations results → no splitting

FORMING VALIDATION: 3RD GEN 980

Simulation

Forming trials

Ref. 11
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Predicted splitting of the 3rd Gen 1180 V1 in multiple locations

Forming trials split at only one location (in-plane stretching)

FORMING VALIDATION: 3RD GEN 1180 V1

B-Pillar sidewall

(in-plane stretching)

Ref. 11
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FALSE POSITIVES: 3RD GEN 1180 V1
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Tooling compensation was performed in Autoform including kinematic hardening

• Part scans provided by Bowman Tooling Precision 

SPRINGBACK EVALUATION

3rd Gen 980

-2.0 mm

-1.21 mm

-1.39 mm

-2.52 mm
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-0.13 mm

Separation 

Distance

3rd Gen 1180 V1

-0.21 mm

-0.78 mm

-0.86 mm

0.03 mm
-2.08 mm

-3.00 mm

Separation 

Distance

Simulation comparisons with 

part scans are approximately 

within ± sheet thickness (1.4 mm)

Advanced kinematic hardening 

model will be added in future 

springback analysis within LS-DYNA
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CONCLUSIONS AND NEXT STEPS

Comparable anisotropy and chord modulus evolution among studied 3rd Gen 

steels and DP steels

Rate sensitivity and local formability greatly varies between studied 3rd Gen 

steels of the same strength level 

→ 3rd Gen 1180 V2 has potential to replace regular DP980

Forming of technology demonstrator could successfully be predicted for 3rd Gen 

980 using simple and deterministic BWx model, springback can be improved 

Forming prediction too conservative in bending zones for 3rd Gen 1180 V1

→ Dynamic instability model in development   

Evaluate 3rd Gen steels in component tests→ GDIS 2022 
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