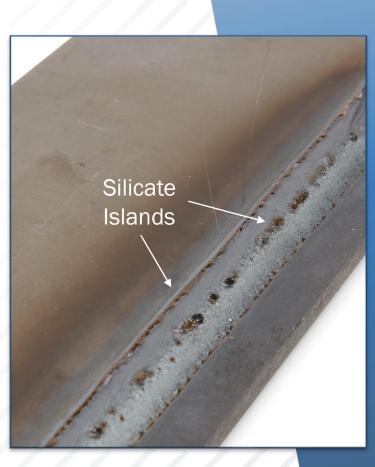
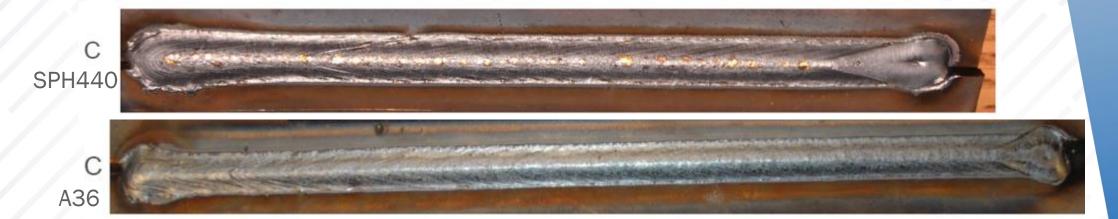
GREAT DESIGNS IN


ADVANCEMENTS IN GMAW TECHNOLOGY FOR IMPROVED SILICATE PERFORMANCE

Taylor Dittrich Consumable R&D Engineer Lincoln Electric


Anthony Nagy Technical Service Chemist PPG Industrial Coatings

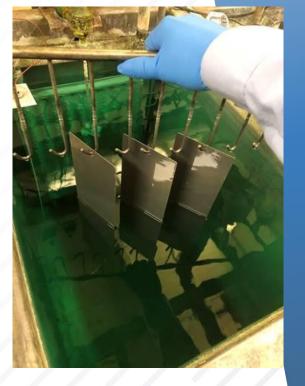
BACKGROUND

- Automotive OEM movement towards low silicate weld deposits for improved corrosion resistance
- Silicate islands (slag islands)
 - Non-conductive oxides
 - Form as a reaction between deoxidizers in the weld/base metal and CO2 in shielding gas
 - Difficult to E-coat -> Decreased corrosion resistance
- Problem Statement: Create a low silicon welding consumable that minimizes surface silicates to improve paint adhesion and increase corrosion resistance after E-coating.

PRODUCT DEVELOPMENT CONSIDERATIONS GDIS

Wire	Mn	Si	Additional Alloying Elements
Prototype A	High	High	
Prototype B	High	High	Х
Prototype C	Low	Low	
Prototype D	High	Medium	Х
Prototype E	Medium	Medium	Х
Prototype F	Medium	Medium	Х
Prototype G	Low	Low	
Prototype H	Medium	Low	Х

WELD SAMPLE METHODOLOGY

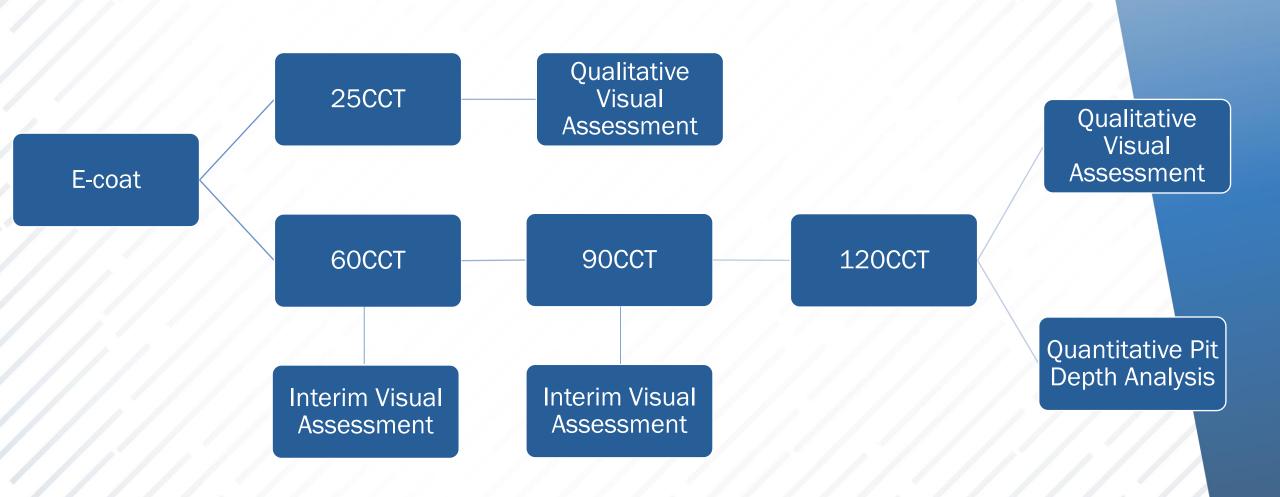

Fully automated robotic welding to mimic production application

Wires Baseplate	ER70S-6 and SuperArc® XLS SPH440				
Joint	Lap				
Gas	80% Ar / 20% CO2				
Gas	45	CFH			
WFS	350	ipm			
TS	39.4	ipm			
CTWD	5/8	in			
Work angle	45	degrees			
Travel angle	0	degrees			
Mode	Rap	vid X			
Trim	1.00	(roughly 26.5 V)			

PRETREATMENT METHODS

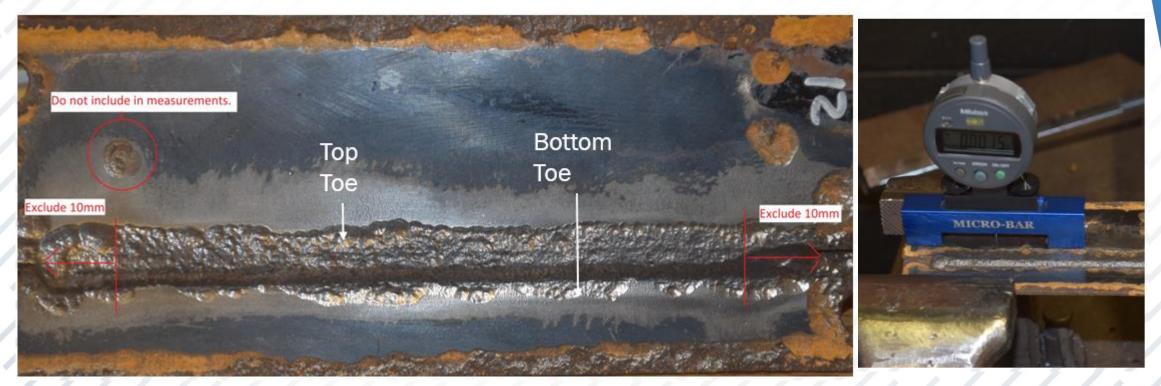
Trial Name	Alkaline Cleaning	Alkaline Conc. Temp, Time	Acid Cleaning	Acid Conc.	Acid Temp.	Acid Time	Conditioner
Control	Alkaline		None	None	None	None	Titanium-
Near Neutral		5% 140°F 3 min	Neutral Acid	20%	140°F	3 min	based OR
Acid Descale			Mineral Acid	10%	140°F	3 min	Zinc-based

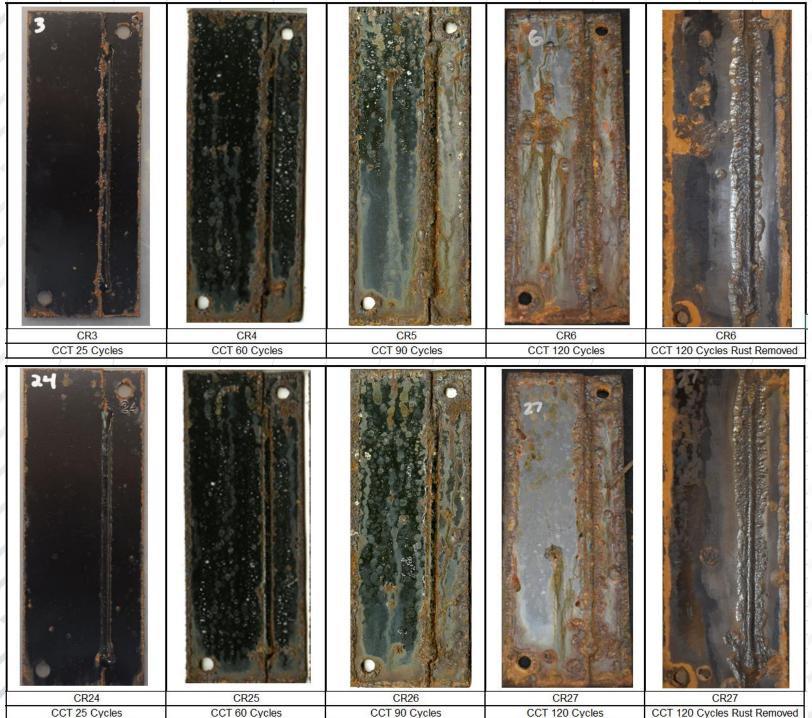
COATINGS


GDIS

All panels were electro-coated as follows:

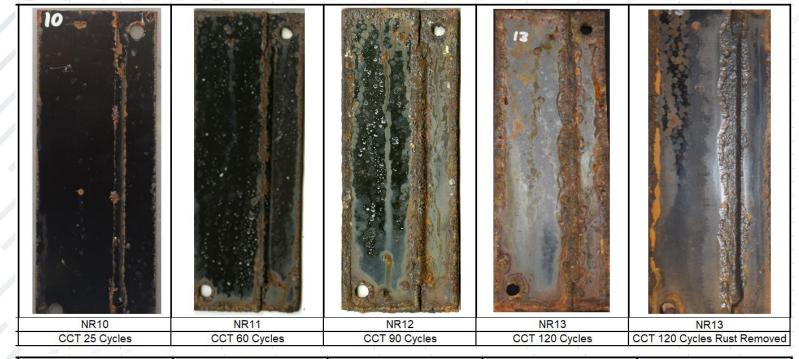
E-coat	Cathodic Epoxy
Temperature	90°F
Voltage	260 Volts
Amperage	3.5 max
Ramp Time	30 seconds
Total Time	90 seconds
Rinse	Virgin DI water, ambient, 30 seconds
Cure	20 minutes at 350°F metal temperature
Film Thickness	0.7-0.8 mils




CYCLICAL CORROSION TESTING

PITTING DEPTH TESTING: METHODOLOGY

- Remove corrosion from weld surface
- Level area of interest in bench vise: top toe versus bottom toe
- Zero the gauge on non-corroded material
- Take 5 measurements along corroded material



ER70S-6 CONTROL TITANIUM-BASED

Average Loss: 0.021" Max Loss: 0.040"

SUPERARC® XLS CONTROL TITANIUM-BASED

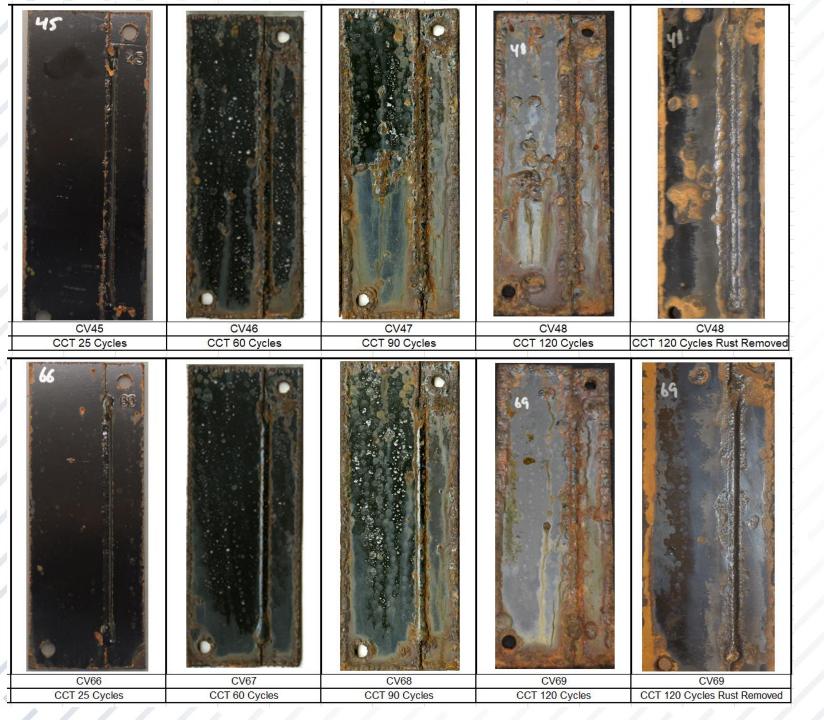
Average Loss: 0.015" Max Loss: 0.038"

ER70S-6 NEUTRAL ACID TITANIUM-BASED

Average Loss: 0.020" Max Loss: 0.185"

SUPERARC® XLS NEUTRAL ACID TITANIUM-BASED

Average Loss: 0.009" Max Loss: 0.024"


GDIS

ER70S-6 MINERAL ACID TITANIUM-BASED

Average Loss: 0.002" Max Loss: 0.008"

SUPERARC® XLS MINERAL ACID TITANIUM-BASED

Average Loss: 0.013" Max Loss: 0.039"

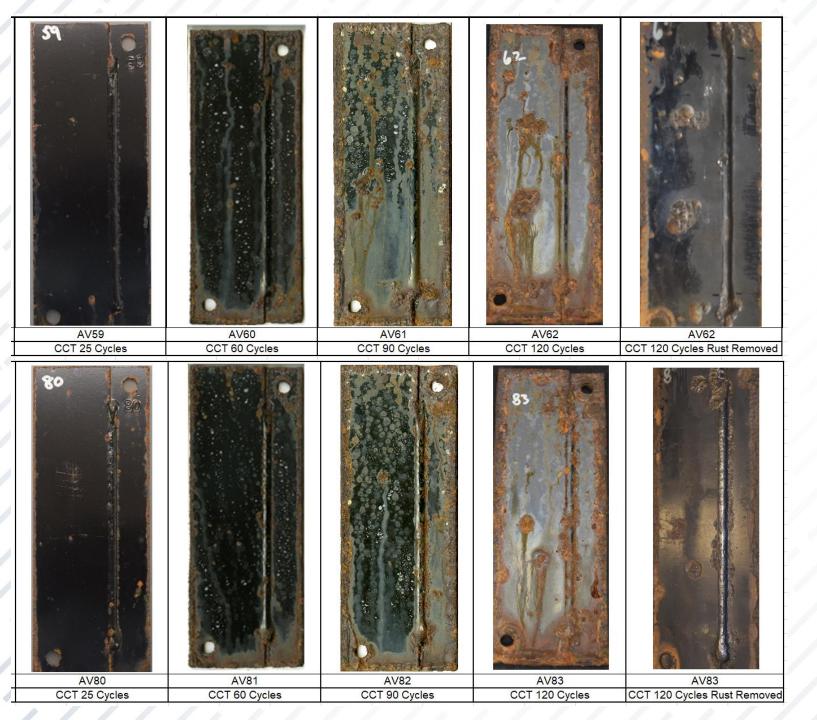

GDIS

ER70S-6 CONTROL ZINC-BASED

Average Loss: 0.021" Max Loss: 0.060"

SUPERARC® XLS CONTROL ZINC-BASED

Average Loss: 0.013" Max Loss: 0.025"



ER70S-6 NEUTRAL ACID ZINC-BASED

Average Loss: 0.026" Max Loss: 0.065"

SUPERARC® XLS NEUTRAL ACID ZINC-BASED

Average Loss: 0.015" Max Loss: 0.045"

GDIS

ER70S-6 MINERAL ACID ZINC-BASED

Average Loss: 0.003" Max Loss: 0.019"

SUPERARC® XLS MINERAL ACID ZINC-BASED

Average Loss: 0.011" Max Loss: 0.055"

CONCLUSIONS: 25CCT VISUAL COMPARISON GDIS

	E	ER7(0S-6		3 0	10	17	45	52	59
Pack ID	Panel ID	Conditioner code	Weld Wire	Trial Name				48		
с	CR7 CR1, CR2 CR3, CR4, CR5, CR6	R	ER70S-6	Control						
N	NR14 NR8, NR9 NR10, NR11, NR12, NR13	R	ER70S-6	Near Neutral						
A	AR21 AR15, AR16 AR17, AR18, AR19, AR20	R	ER70S-6	Acid Descale			•			
С	CV49 CV43, CV44 CV45, CV46, CV47, CV48	۷	ER70S-6	Control						
Ν	NV56 NV50, NV51 NV52, NV53, NV54, NV55	۷	ER70S-6	Near Neutral			N.			la al
A	AV63 AV57, AV58 AV59, AV60, AV61, AV62	۷	ER70S-6	Acid Descale	CR3	NR10	AR17	CV45	NV52	AV59
	71100,71100,71101,71102				CCT 25 Cycles	CCT 25 Cycles	CCT 25 Cycles	CCT 25 Cycles	CCT 25 Cycles	CCT 25 Cycles
	Sup	oerAi	rc® X	KLS	24	31	38 (7.88	66	73	80
С	CR22, CR23 CR24, CR25, CR26, CR27	R	SuperArc® XLS	Control						-34
N	NR35 NR29, NR30 NR31, NR32, NR33, NR34	R	SuperArc® XLS	Near Neutral						
	AR42				C					
A	AR36, AR37 AR38, AR39, AR40, AR41	R	SuperArc® XLS	Acid Descale						
С	AR38, AR39, AR40, AR41 CV70 CV64, CV65 CV66, CV67, CV68, CV69		SuperArc® XLS SuperArc® XLS			wf				
С	AR38, AR39, AR40, AR41 CV70 CV64, CV65	V		Control		M.				
С	AR38, AR39, AR40, AR41 CV70 CV64, CV65 CV66, CV67, CV68, CV69 NV77 NV71, NV72	V	SuperArc® XLS	Control						
CN	AR38, AR39, AR40, AR41 CV70 CV64, CV65 CV66, CV67, CV68, CV69 NV77 NV71, NV72 NV71, NV72 NV73, NV74, NV75, NV76 AV84 AV78, AV79	V	SuperArc® XLS SuperArc® XLS	Control	CR24 CCT 25 Cycles	NR31 CCT 25 Cycles	AR38	CV66 CCT 25 Cycles	NV73	AV80

CONCLUSIONS: 120CCT OVERALL COMPARISON RANKED BY MAX PIT DEPTH

Rank	Wire	Acid Cleaning	Conditioner	Avg (in)	Max (in)
1	ER70S-6	Mineral Acid	Titanium-based	0.002	0.008
2	ER70S-6	Mineral Acid	Zinc-based	0.003	0.019
3	SuperArc [®] XLS	Neutral Acid	Titanium-based	0.009	0.024
4	SuperArc [®] XLS	None	Zinc-based	0.013	0.025
5	SuperArc [®] XLS	None	Titanium-based	0.015	0.038
6	SuperArc [®] XLS	Mineral Acid	Titanium-based	0.013	0.039
7	ER70S-6	None	Titanium-based	0.021	0.040
8	SuperArc [®] XLS	Neutral Acid	Zinc-based	0.015	0.045
9	SuperArc [®] XLS	Mineral Acid	Zinc-based	0.011	0.055
10	ER70S-6	None	Zinc-based	0.021	0.060
11	ER70S-6	Neutral Acid	Zinc-based	0.026	0.065
12	ER70S-6	Neutral Acid	Titanium-based	0.020	0.185

CONCLUSIONS: 120CCT PIT DEPTH

- With mineral acid cleaning, ER70S-6 wire performed the best with the least amount of corrosion
- In most other cleaning/conditioner combinations, SuperArc® XLS performed the best with the least amount of corrosion
- Neutral acid and control samples for ER70S-6 consistently performed the worst in terms of corrosion resistance

PHASE 2 TESTING

GDIS

- Plan to perform testing on a variety of base materials with a wider array of welding consumables
- Will include zinc-coated materials and x-ray to determine porosity

Involved parties:

- Lincoln Perform all welding and sample labeling
- PPG Perform all pre-treatment / coating on samples
- OEM Supply base material and perform corrosion testing

FOR MORE INFORMATION

GDIS

Taylor Dittrich Lincoln Electric

Taylor_Dittrich@LincoInElectric.com

Anthony Nagy PPG Industrial Coatings ANagy@ppg.com