GREAT DESIGNS IN

NEW GENERATION OXIDATION RESISTANCE (COATING FREE) PRESS HARDENING STEEL

Qi Lu, Sarah Tedesco, Ming Shi, Jason Coryell, Jeff Wang

General Motors

GDIS

OUTLINE

- Development Overview
- Component Bend Testing
- Developing a CAE Model
- Coating Adhesion and Welding Results
- Future Work
- Summary

GDIS

DEVELOPMENT OVERVIEW

Background and problem statement, alloy chemistry inspiration, material properties and microstructure.

GDIS **PHS OVERVIEW, MOTIVATION FOR NEW DEVELOPMENT**

PHS with ultra high strength (1500 MPa) are widely used for body structure applications since 1970s.

Current market share is AISi coated and bare, with a small Zn coated component A low cost, oxidation resistant steel is highly desired by automotive OEMs.

	Since 1970s	Since 1999	Since 2016
Surface condition after hot forming:	Bare 22MnB5	AlSi-coated 22MnB5 10mm ↔→	Zn-coated PHS (direct hot forming)
Advantages & Drawbacks	Low cost but poor oxidation resistance (die cleaning and shot blasting needed)	Good oxidation resistance but high price and limited supply base (IP monopoly)	Limited galvanic protection, but narrow process (forming and welding) window and still need shot blasting post forming

STAINLESS STEEL, BUT ONLY TEMPORARILY...

GDIS

Uncoated stainless steel has life-time oxidation resistance since the addition of Cr (>12%).

*A. S. Khanna ,Introduction to High Temperature Oxidation and Corrosion, page 123

Staying shiny and scale free at 930C for about 6 minutes needed for hot

NOVEL COATING FREE PHS: ALLOY COMPOSITION GDIS

Considering all the requirements, the composition of coating free PHS is defined below (in wt.%):

Material		С	Mn	Cr+Si+Mo	Nb+Ti	В	Bal.
AISi coated PHS (22Mr	nB5) 0	.19~0.25	≤1.4	≤1.0	≤0.12	0.0008- 0.005	Fe
Martensitic Stainless S for Hot Stamping	oteel 0	.05~0.15	≤1.0	Si<0.75;Cr= 11-13	≤0.15	None	Fe
Coating free PHS (uncoated)	0	.19~0.25	≤1.4	≤4.0	≤0.12	None	Fe
Carbon for strength, hardenability and weldability Mn to set austenitization temperature			for oxidat & Cr for in harden	ion resistance icreased ability Nb a size	added for g control. N	Cr addition unnece harde grain lo Ti	n means B essary for enability

RESULTS: OXIDE THICKNESS AFTER HOT STAMPING

Material	Bare 22MnB5	AISi Coated 22MnB5	Coating Free PHS
Surface condition	Poor surface quality	Good surface quality 10mm	Shiny" as mirror No scale, no coating required used for al three PHS.
Oxide/ coating morphology	Thick oxide Oxide layer 6~10µm	AlSi coating (~40 µm)	Naturally occurring thin oxide film ~0.5μm Pa 1 = 558.5 nm Pa 2 = 323.3 nm Pb 1 = 90.0* Pb 2 = 90.0* Ultra-thin oxide 5μm
Advantages & Drawbacks	Low cost, Scale removal required	Good oxidation resistance, limited supply base	Good oxidation resistance NO SCALE REMOVAL

RESULTS: NO CHANGE TO PRODUCTION LINES REQUIRED

The critical cooling rate for coating free PHS to achieve complete martensitic transformation is 15 °C/s, compared to conventional 22MnB5 (~27 °C/s) for hot forming application.

CCT diagram

Microstructure after air cooling

RETAINED AUSTENITE IN MICROSTRUCTURE

GDIS

New alloy design enables the formation of beneficial retained austenite.

COUPON TENSILE AND BENDING RESULTS

GDIS

Refined PAGS and retained austenite enable excellent improvement in mechanical performance over 22MnB5.

1.4mm thick PHS @ 920C/360S + paint bake

VISUAL SURFACE QUALITY POST HS BARE VS. UNCOATED

Coating free PHS has superior surface quality (still shiny) compared to bare PHS. Both samples produced on the same production line with the same parameters.

Conventional bare PHS

GDIS

COMPONENT BEND TESTING

Characterization of energy absorption behavior.

COMPONENT BENDING PERFORMANCE I: COATING FREE VS 1500MPA ALSI

Coating free PHS has $\sim 20\%$ higher energy absorption (integration of load - displacement curve to peak force) compared to 1500MPa AlSi coated PHS.

GDIS

COMPONENT BENDING PERFORMANCE II GDIS

Coating free PHS has ~23% higher energy absorption (integration of peak force and peak force displacement) than AISi coated PHS 1800

DEVELOPING A CAE MODEL

Correlating mechanical testing results to CAE simulation for material card development.

FRACTURE MODELING: TESTS USED TO BUILD MODEL

Coupon Tests

(Ratio of major true strain to minor true strain)

GDIS

Bending

fracture

FRACTURE MODELING: FRACTURE LOCI (W CURVE) COMPARISON

GDIS

Comparison of coating free PHS 1700 MPa, AlSi coated 1500 and 2000 MPa

Coating-free PHS has better fracture resistance than AISi coated 1500 and 1800 MPa

Ratio of major true strain to minor true strain

COMPONENT BENDING PERFORMANCE SIMULATION

ShareFea set up: Loading rate: 15 mm/min The thickness of both materials is 1.4 mm. Distance of two supports: 525 mm

GDIS

GDIS

COATING ADHESION AND WELDING RESULTS

E-Coat adhesion results, welding schedule development (like to like) and cross tension/lap shear results.

RESULTS- PRELIMINARY E-COAT ADHESION ASSESSMENT

GDIS

Hot stamping at 920 °C/360s +Phosphating + E-coating

• Stone chip test (GMW 14700): AlSi coated PHS = Bare PHS = Coating free PHS

• Tape adhesion test (GMW 14829): AlSi coated PHS = Bare PHS = Coating free PHS

Good E-coating adhesion of Coating free PHS.

CROSS TENSION NUGGET EXAMPLE

GDIS

The hardness of the fusion zone is higher than that of AlSi coated 22MnB5. Additional tempering pulses could be useful.

RSW: PHS TO PHS SCHEDULE DEVELOPMENT

Pre-pulse and tempering can effectively improve the cross tension strength.

Cross tension performance

GDIS

WELDING: PHS TO DP590

Same performance with existing AISi coated PHS with the same stack up.

GDIS

FUTURE WORK

Commercialization update, new grade development, potential application projects.

STEEL PRODUCTION TRIALS

Coating free PHS successfully produced via conventional steel making processes.

UPCOMING WORK: 1200MPA COATING FREE PHS

Fully martensite microstructure, same oxide layer protection in the furnace.

GDIS

26

In wt.%	С	Mn	Cr+Si+Mo	Nb+Ti	В	Bal.	
Coating free PHS (1700 MPa)	0.19~0.25	≤1.4	≤4.0	≤0.12	None	Fe	
Coating free PHS (1200 MPa)	0.06-0.12	≤2	≤4.0	≤0.12	None	Fe	

UPCOMING WORK: 1200MPA COATING FREE PHS

Excellent tensile and VDA 238-100 bending performance.

Steel	YS/MPa	UTS/MPa	TEL/%	UEL/%	Bending angle/°C	Peak force/N
Coating free 1200MPa (1.5mm)	1028 ± 21	1237 ± 4	8.4 ± 0.5	4.8±0.2	76.5 ± 0.6	10060 ± 35
AISi PHS 1200 MPa (1.5mm)	850	1080	6.0-7.0	4.5	80	N/A

GDIS

FUTURE APPLICATIONS OUTLOOK

Hybrid material applications for broader industry adoption

	B-Pillar	Door Ring	Process
Existing AISi coated PHS	1500 MPa + 500/1000 MPa	1500 MPa + 500/1000 MPa	AlSi coated PHS: Laser ablation + laser welding or filler wire +laser welding
Coating free PHS	1700 MPa+ 1200 MPa	1700 MPa+ 1200 MPa	Coating free PHS: Direct laser welding

GDIS

SUMMARY

- New alloy development with Cr and Si additions allow for higher hardenability and, Cr specifically, develop a stable oxide layer in the furnace to protect from decarburization
- The improved chemistry allows for the presence of RA in the material, increasing the energy absorption in intrusion testing.
- Coating adhesion is not impacted by the stable oxide layer
- Welding results show promise with improved lap shear strength. Schedule development includes pre-pulse to break oxide and post pulse for tempering weld.
- Future work to come includes expansion of supply chain into the NA market, new 1200MPa grade and investigations into TWB for B-pillar and door ring components.

Thanks for your attention!

SHOULD

FOR MORE INFORMATION

GDIS

Sarah Tedesco

General Motors

sarah.tedesco@gm.com