

Thermal Integrated Clinching Process-Innovative Joining of Next Gen. of AHSS Mark A. Savoy¹, Hassan Ghassemi-Armaki² ¹Utica International Inc., ²ArcelorMittal Global R&D

Strategic Development Partners

ARCELORMITTAL:

- ArcelorMittal is the leading supplier of quality steel in automotive market.
- Global R&D EC provides mechanical and metallurgical support and testing support for process window and optimization of AHSS Thermal Integrated joining
- Technical support on requirements of joining strength for light-weighting and occupant safety

TOX PRESSOTECHNIK:

- Supply clinch tooling and electro-mechanical drives
- Collaboration investigating the process for mechanical joining a complete vehicle
- Global technical support

COHERENT Inc.

- Manufacture of our Diode Lasers
- Design and supply of Collimators and Optics
- Global technical support

Applications and Objective

Fasteners attachment during assembly

Down gauging for light weighting

- \rightarrow Need for joining technology for a wide range of steel stack ups and complex BIW assemblies
- Clinching | Mechanical Joining:
 - Non additive widely accepted mechanical joining technique
 - Reduce energy consumption and CO₂ emissions
 - Capable of joining 3G AHSS
- Self Pierce Riveting | Mechanical Joining:
 - Aluminum and thin sheets to AHSS
 - Mechanical joining of 3 & 4T stack-ups
- Thermal Integrated Clinching AssemblyTM
 - Apply controlled heat zone for mechanical joining
 - Exceptional Joint Strength & Dynamics
 - Suitable for complex AHSS and UHSS
 - Compatible with existing facility layout.

Example AHSS BIW - VOLVO XC-90 Platform

Robotic Thermal Clinching Assembly™

A complete Class 1 Laser product integrated on assembly floor with no laser booth requirements and is mounted and easily interfaces to any 210KG robot. Available throughout North America April 2018.

#Steel Matters

#GDIS

Pedestal Fixture - Clinching Large Assemblies & Clinch Nuts

Class 1 Validation Test

ALLOWABLE EMISSION TESTING

Wave length		<u>980 nm</u>		Date:	28-Mar-18			
Hold down Force		<u>2.5KN</u>		Material:	Coupon 1	Usobor-1500 1.5m	m	
					Coupon 2	Usobor-1500 1.5m	ım	
Test Engineer: R. Lemanski				Allowable limits: \geq 1.72 mill watts (mW)				
	Power							
<u>Sample</u>	<u>Watts</u>	Time/seconds	Radiation	Radiation	Radiation	Radiation	Radiation	
			<u>Pos 1</u>	<u>Pos 2</u>	Pos 3	<u>Pos 4</u>	<u>Ave.</u>	
1	ЗКW	3	61.6	59.74	56.72	59.69	59.44	
1	ЗКЖ	3.5	59.71	40.33	55.73	57.82	53.40	
			All values are in MICRO Watts (µW)					

• The UTICA Thermal Clinching Assembly emits much less radiation then a typical laser pointer

Robotic Thermal Integrated Clinching

Potential Energy Savings Clinching Vehicle

11.7% Overall Energy Reduction – Based on 500K units

COMPARISON OF AVERAGE RATES (IN CENTS PER kWh) FOR MPSC-REGULATED ELECTRIC UTILITIES IN MICHIGAN April 1, 2017

Ref. US DOE, Argonne National Laboratory study ANL/ESD/10-6

	RES	SIDENTIA	<u>L</u>	SMALL COM	IMERCIAL	LARGE	COMMER	CIAL		INDUSTRIAL	:
kW kWh	<u>250</u>	500	<u>1,000</u>	5 <u>1,000</u>	25 <u>5,000</u>	100 <u>21,600</u>	100 <u>28,800</u>	100 <u>36,000</u>	1,000 <u>432,000</u>	10,000 <u>4,320,000</u>	50,000 21,600,000
INVESTOR OWNED											
ALPENA POWER	14.48	13.29	12.69	13.00	12.15	12.49	11.21	10.32	8.45	6.65	6.06
CONSUMERS ENERGY	17.06	15.47	14.68	15.15	13.49	13.70	12.54	11.84	9.56	9.00	8.04
DTE ELECTRIC	18,44	16.74	16.66	14.51	13.42	12.78	12.73	12.04	8.73	7.88	7.62
AEP (I&M) COMBINED	14.59	12.35	11.23	13.66	11.65	10.77	9.95	9.46	8.36	7.94	9.39
NORTHERN STATES POWER	15.33	13.39	12.42	12.55	11.51	12.70	11.52	10.82	10.53	10.43	10.42
UPPER PENINSULA POWER	27.01	24.01	22.51	18.58	16.89	12.08	11.53	11.20	10.26	9.57	8.76
UPPER PENINSULA POWER IRON RIVER	26.11	23.11	22.42	18.58	16.89	12.08	11.53	11.20	10.26	9.57	8.76
UMERC (FORMERLY WEPCO)	18.28	16.15	15.08	17.20	14.89	14.51	14.46	12.32	10.67	10.22	7.88
UMERC (FORMERLY WPSC)	14.78	12.38	11.18	13.08	10.82	10.55	10.46	10.41	8.51	8.10	7.51
AVERAGE INVESTOR OWNED	18.45	16.32	15.43	15.15	13.52	12.41	11.77	11.07	9.48	8.82	8.27

Source: Michigan Public Service Commission Utility Rate Books Compiled by the Regulated Energy Division

Average manufacturing energy usage per Generic 3,370 pound vehicle, Stamping &Assembly Plant usage only:					
Total kWh per vehicle	684		Tot		
Vehicles per month	41,666		Uni		
Total kWh per month	28,500,000		Tot		
Yearly kwh usage	342,000,000		Yea		
Yearly energy cost:	\$26,060,400.00		Yea		

Average welding energy usage at assembly for generic 3,370
pound vehicle, assumes 4,000 joints:

Total kWh per unit	80
Units per month	41,666
Total kWh per month	3,333,280
Yearly kwh usage	39,999,360
Yearly energy savings:	\$3,047,951.00

Process Optimization

- Process optimization and mechanism understanding for joint strength/quality:
 - Majority of work focused on Usibor®1500 and Usibor® 2000 process optimization for:
 - $\circ~$ Feasibility of Clinching for AHSS beyond 1000 MPa ~
 - Improvement of TSS
 - Improvement of CTS
 - o Mechanism understanding of process optimization
 - Studied homogenous stackups:
 - o 1.5mm GA TRIP780
 - \circ 1.5 mm Usibor®1500
 - \circ 1.0 mm Usibor®1500
 - 1.6 mm Usibor® 2000

Joint Strength: Tension Shear Strength

• Tension-Shear strength improvement by thermal Integrated Clinching compared to Cold Clinching.

Joint Strength: Cross-Tension Strength

Cross-Tension Strength Improvement By Thermal Integrated Clinching

#GDIS

#Steel Matters

- Too low temperature couldn't soften the top sheet enough at the necking area for material flow.
- Too high temperature with coarse/brittle microstructure should be avoided.

1.0mm Usibor®1500 @ 500°C, 850°C, 1050°C

Too high temperature for thin sheets can damage bottom sheet.

#GDIS

#Steel Matters

- Spot welds have a soft heateffected zone which is surrounded by a hard nugget and makes it susceptible to failure.
- Extreme temperatures causing coarse/brittle microstructure can be avoided with the Thermal Integrated Clinching method.

Representative Cross Section

- Upper sheet neck thickness t_N determines joint strength in most applications.
- Remaining combined thickness X is controlled and closely related to $t_{\rm N}$.

Necking Thickness

Increasing of necking thickness increases TSS and CTS.

#GDIS | #Steel Matters

Thermal Integrated Clinch Nuts

#GDIS

#Steel Matters

- Thermal Clinch Joint is stronger than class 10 clinch nuts.
- Class-12 Pierce Clinch Nuts are being developed now.

PHS Thermal Integrated Clinch Nut Results

Push out force and torque data for self-piercing clinch nut.

Material	Thickness	Nuts	Push out force (N)	Torque (N.m)
Usibor® 1500	1.0 mm	KP 6-S-10	1260	30
Usibor® 1500	1.5 mm	KP 8-H-10	7000	66
Usibor® 2000	1.6 mm	KP 8-H-10	7400	67

Clinched nuts pushout strength exceed OEMs specification.

Summary

- Thermal Integrated Mechanical Joining is suitable for current and Next Gen. AHSS where resistance spot-weld fails regarding strength and weld quality.
- Thermal Integrated Clinching process does not require laser booth for operator safety.
- There are benefits in case of energy and cost saving over the time as compared to resistance spot-weld methodology.
- Influencing parameters for determination of Thermal Integrated Clinching windows process was developed :
 - Temperature/heat should be high enough to ensure the top sheet is ductile enough to deform, especially at the total width of the necking area.
 - Too high temperature/time should be avoided to avoid tempering of martensite extensively and surface breaking especially for thin material.
- A good combination of Joining Strength (<u>Cross-Tension and Tension–Shear Strength</u> "CTS and TSS") was achieved after process optimization.

Next Steps

- Continue the study on next Gen. AHSS (Zn Coated 3rd Gen. AHSS).
- Working with OEMs to adequately implement alternative joining solution where resistance spot-weld fails for Next Gen. AHSS.
- Dissimilar Thermal Integrated clinching of AHSS & PHS with AI and with adhesives.
- Thermal Integrated joining corrosion mitigation study.
- Other Advanced laser-assisted mechanical joining:
 - Development of Thermal Integrated Self Pierce Rivet process.
 - Development of Thermal Integrated Flow Drill Screw & Flow Push process.

#GDIS

#Steel Matters

For More Information

Mark Savoy Utica International Inc. +1 248-764-4500

msavoy@uticaenterprises.com

Hassan Ghassemi-Armaki ArcelorMittal 401-572-0427 Hassan.ghassemi@arcelormittal.com