GREAT DESIGNS IN

Presentations will be available for download on SMDI's website on Wednesday, May 22

GREAT DESIGNS IN

ON THE DIFFERENCES ON FRACTURE PREDICTION OF PLANE STRAIN BENDING AND TENSION OF THIN SHEETS

Mostafa Mobasher

Thornton Tomasetti | Applied Science Practice

Thornton Tomasetti

ABOUT US – THORNTON TOMASETTI

ornton Tomasetti

Applied Science Solid and Fluid Dynamics **Mechanics and Materials Acoustics and Stochastics** Software Development **Computational Simulation Defense Vehicles & Structures**

1500+ Scientists & Engineers Offices in US, Europe, Asia & Australia

ABOUT US – VISTAMAT SUITE

VistaMat Suite is a high fidelity material modeling tool that aids the simulation of ductile fracture of metal sheets subject to mechanical and thermal loading.

VistaMat Suite provides a solution to calibrate material models with minimal amount of experimental data.

www.vistamat.com

Chornton Tomasetti

PLANE STRAIN FRACTURE: BENDING VS. IN-PLANE

PLANE STRAIN FRACTURE: BENDING VS. IN-PLANE

- Observation:
 - In-plane coupons vs. VDA bending $\rightarrow \varepsilon_f$ discrepancy
- Challenge:
 - Understanding the causes of discrepancy
 - Predicting actual failure scenario in local (fracture scale) and global (component scale) models

PLANE STRAIN FRACTURE: BASIC OBSERVATIONS

In-Plane:

Bending:

[Bandpay, 2015]

Basic observations:

- Progressive crack propagation in bending – stress and strain change through thickness
- Extensive vs. no necking

VDA BEND - PRELIMINARY SIMULATIONS (MBW1500)

- Thin (0.001mm) layer of soft membrane elements: E = 200MPa (DIC membrane)
- Calibration with no failure stress analysis only

VDA BEND – STRESS STATE

VDA BEND – STRESS STATE

[Londono et. al, 2018]

IN-PLANE TENSION – PLANE STRAIN (MBW1500)

- 0.04mm solid elements (32 through thickness)
- In-plane plane strain tensile simulation (plasticity only)

IN-PLANE TENSION – STRESS STATE

 $\sigma_{zz} \approx 1000 MPa$

[Londono et. al, 2018]

IN-PLANE TENSION VS. VDA BEND- STRESS STATE

IN-PLANE TENSION VS. VDA BEND- STRESS STATE

[Londono et. al, 2018]

IN-PLANE TENSION VS. VDA BEND- STRESS STATE

PREVIOUS EFFORTS - CORRELATIONS

 $\sigma_{zz}\approx 0$

Correlations proposed (e.g. Bandpay):

$$\bar{\varepsilon_b}^f = \bar{\varepsilon_m}^f + \Delta \bar{\varepsilon}^f(\rho, t)$$

- PRELIMINARY: In-plane and bending strains develop under different stress state
- Correlations obtained by adding in-plane and bending strains probably not approppriate

MODELING CHALLENGE – LENGTH SCALES

Micromechanically-motivated models:

HONDA

- Vast length scale differences to bridge
- Need for a new approach to solve the problem

Xue et al, 2010

0.45 - 0.30

IN-PLANE PLANE STRAIN TENSION – ELEMENT SIZE

 Illustration of the importance of the element size → shell elements cannot be used reliably if in-plane dimension is smaller than thickness!

CURRENT INVESTIGATIONS

Challenge: Enhance current shell formulations to predict bending vs. tension loading

BENDING - MBW1500 - 2013-2017 DATA (2MM GL)

Data points for MIT MMC model parameter identification

Ford
ArcelorMittal

	Triaxiality	Lode angle	Fracture strain
Uniaxial	0 379	0.839	0.346
Chickler	0.010	0.000	0.010
Cut-out	0.537	0.295	0.207
Plane strain	0.565	0.040	0.133
Biaxial	0.645	-0.870	0.232
Equi-biaxial	0.662	-0.999	0.255

vistabam	
0.35	
0.19	
0.16	
0.22	
0.24	
	۰.

Available PS data:

- In-plane (2013): $\varepsilon_{cr} = 16\%$
- In-plane (2017): $\varepsilon_{cr} = 13\%$
- VDA bending (2017): $\varepsilon_{cr} = 38\%$

ROCKER BEAM THREE-POINT BENDING

SUMMARY & NEXT STEPS

- Significant advances in ductile fracture modeling over last ~10 years
- Large scale modeling with shell elements not well addressed by most existing approaches
- VDA bending analysis → fundamentally different than in-plane tensile behavior – effect of transverse normal stress
- Accuracy improvements \rightarrow potential weight savings
- Shell elements within the through-thickness necking cannot represent the actual stress state
- NEXT STEPS: Formulate a damage accumulation rule for GISSMO and other models in LSDyna that allows different damage accumulation rate in bending

ACKNOWLEDGMENT

- References:
 - VistaMat Suite <u>www.vistamat.com</u>
 - Woelke, P., Abboud, N. (2012) "Modeling Fracture in Large Scale Shell Structures". J. of the Mechanics and Physics of Solids; 60, 12, 2044-2063
 - Nahshon, K., Hutchinson, J. W. (2008). Modification of the Gurson model for shear failure. European Journal of Mechanics-A/Solids, 27(1), 1-17.
 - Londono, J., Woelke, P., Knoerr L., Dykeman, J., Malcolm S., (2018), "Fundamental Differences between Fracture Behavior of Thin Sheets under Plane Strain Bending and Tension", IDDRG 2018, Waterloo CA
- Co-workers:
 - Juan G. Londono Thornton Tomasetti
 - Pawel B. Woelke Thornton Tomasetti
 - Rasmus G. Andersen Technical University of Denmark
 - Kim Lau Nielsen Technical University of Denmark

GREAT DESIGNS IN

Presentations will be available for download on SMDI's website on Wednesday, May 22