GREAT DESIGNS IN

Presentations will be available for download on SMDI's website on Wednesday, May

22

GREAT DESIGNS IN

Update on IIHS side impact research May 15, 2019 Livonia, MI, USA

Sean O'Malley Senior Test Coordinator

Insurance Institute for Highway Safety Highway Loss Data Institute

IIHS/HLDI

Vehicle Research Center – Ruckersville, VA

The Insurance Institute for Highway Safety

Founded in 1959

Independent, nonprofit, scientific, and educational organization Mission - Reducing highway losses (deaths, injuries, and property damage)

The Highway Loss Data Institute

Founded in 1972

Perform scientific studies of insurance data

Publish insurance loss results

IIHS side impact crashworthiness test

Vehicle ratings based on dummy injury measures, restraints/dummy kinematics and structural performance

Side crash fatalities in the United States

Side impact ratings: crash tests and field data

Fatal crash analysis - 2011

- Fatality risk in side impact crashes 70 percent lower in 'good' rated vehicles versus 'poor'
- Research Question: What crashes remain fatal?
- Fatal/Serious Injury case review 2015
 - Predominantly involve more severe crashes: higher impact speed and heavier striking vehicles
- Modified crash configuration 2017
 - Impact location similar to existing test but higher severity (impact speed or striking vehicle mass)

MDB mass underrepresents current SUVs and pickups

Research testing: Comparison of IIHS barrier, SUV and Pickup impacts at higher mass and higher speed 1900 kg, 60 km/h

IIHS Barrier

Vehicles for evaluation

All 'good' performers, represent high-to-low range of 'good' evaluation

Very strong Good rated structure

Toyota Camry

Borderline Good-Acceptable structure

Honda Accord

Volkswagen Atlas

Infiniti QX50

Ford F-150 into Toyota Camry

GDIS **IIHS** HLDI

Vehicle rotation differences

Vehicles vs. MDB

Issues observed with MDB in higher speed tests

2018 Toyota Camry

Structure: MDB and F-150 differences

1,900 kg MDB into Camry at 60 km/h

2,257 kg F-150 into Camry at 60 km/h

2018 Toyota Camry

Structure: MDB and F-150 differences

Barrier crushes and backing plate loads wheel arch

Fender and bumper bend before crushing arch

2018 Toyota Camry

Structure: MDB and F-150 differences

- CE test 22.0 cm from seat C/L
- MDB 17.6 cm from seat C/L
 - Acceptable driver HIC
 - Acceptable driver and rear passenger average torso deflection
 - Good lower body (pelvis & legs)
- F-150 11.3 cm from seat C/L
 - Good upper body (chest & head)
 - Marginal driver femur force
 - Poor driver femur moment

2018 Volkswagen Atlas

Structure: MDB and F-150 differences

1,900 kg MDB into Atlas at 60 km/h

2,257 kg F-150 into Atlas at 60 km/h

2018 Volkswagen Atlas

Structure: MDB and F-150 differences

Outer edge of barrier crushes, then loads a-pillar, bucking roof and windshield

Fender and hood of F-150 crush, instead of loading apillar, reducing roof buckle

2018 Volkswagen Atlas

Structure: MDB and F-150 differences

CE – 32.0 cm from seat C/L

MDB – 21.2 cm from seat C/L

- Acceptable HIC
- Acceptable driver average torso deflection
- Marginal passenger peak torso deflection
- Good lower body (pelvis & legs)
- F-150 26.5 cm from seat C/L
 - Good head and legs
 - Marginal passenger torso deflection
 - Acceptable driver and passenger pelvis (poor passenger acetabulum)

Vehicle deformation when struck by pickup/SUV

Localized deformation vertically at height of pickup's frame rails

"M" shaped loading pattern along vehicle side

Vehicle deformation when struck by MDB

Uniform loading front to back

Uniform loading top to bottom

Dummy injury measures

- Body regions with injury risks exceeding IARVs – MDB vs vehicles
 - More pelvis and leg interaction
 - -Less upper body interaction

Good performing vehicles produced a range of performance 1,900 kg MDB - 60 km/h

Borderline Good-Acceptable structure in ratings test

Camry

Atlas

Accord

QX50

Next Steps MDB redesign

Barrier designed to capture stiffer and softer regions of vehicle front ends?

Summary

- Higher speed test with a heavier MDB could encourage structural and restraint system design changes
- Modification of the IIHS MDB may be necessary to make it more representative of SUV or Pickup striking vehicles
 - Different vehicle kinematics
 - Differences in structural deformation produced different injury patterns
 - MDB indicated high risk of head and chest injuries
 - SUV/Pickups indicated high risk of pelvic injuries
- Side crashworthiness can be improved with more stringent evaluation criteria

Thank You!

GREAT DESIGNS IN

Presentations will be available for download on SMDI's website on Wednesday, May 22