GREAT DESIGNS IN

ROLE OF STEEL IN FUTURE MOBILITY

Hesham Ezzat Steel Market Development Institute

Future Mobility

- A gradual shift in transportation sector towards more efficient and affordable vehicle sharing
- Will not exclude individual ownership as part of the

Autonomous, Connected, Electric, and Shared Vehicles (ACES)**

automotive industry

- An opportunity to better the quality of life through enhanced mobility and reduced congestion and pollution

* "The Great Divide: What Consumers Are Buying vs. The Investments Automakers & Suppliers Are Making in Future Technologies, Products & Business Models", Carla Bailo et al, Center for Automotive Research (CAR), February 2018

Ownership Model Evolution

Current

- Individual owners/Drivers
- Safety/Reliability
- Aesthetics/Technology
- Vehicles operate a fraction of the day

Future

Mobility providers/Fleet operators

Ownership

- Safety/Reliability
- Pleasant interior/Comfortable ride
- Vehicles operate almost all day

GDIS

Design and Development

Current

- Safety and occupant protection
- Durability and reliability
- Expressive exteriors/Crafted interiors
- Mass and cost efficiency

<u>Future</u>

Safety and occupant protection

Design

- Durability and reliability
- Economical to operate
- Ride experience

GDIS

Manufacturing Systems

Current

- Dominated by high volume processes
- Established with incremental improvements -
- Integrated supply base
- Capital intensive

Manufacturing

Future

- More low volume processes
- Additive manufacturing
- Increased supplier integration
- Modular assembly

GDIS

Role of Steel in Future Mobility

The steel industry has a long history of successfully partnering with global automakers to develop highly optimized, cost effective and mass efficient solutions to address:

- Stri pro FUTURE MOBILITY WILL BE NO EXCEPTION
- Vehicle lightweighting for improved fuel economy and reduced tailpipe emissions

The resulting steel executions provided automotive partners with exceptional performance at an affordable cost.

Role of Steel in Future Mobility

Development Challenges

- New crash energy management strategies and restraint system designs
- Mass efficient and cost-effective design solutions
- Increased durability requirements and component fatigue life targets

Role of Steel in Future Mobility

Steel: The Material of Choice

The broad spectrum of steel grades enables automotive designers to develop mass and cost efficient solutions capable of meeting or exceeding,

- The future crash and occupant protection requirements
- The increased durability and fatigue targets

Role of Steel in Future Mobility

Steel: The Material of Choice

Innovations in steel forming technologies such hydroforming, roll-forming, hot stamping, etc., as well as advancements in steel, and mixed material, joining technologies enable:

- More architectural creativity and freedom to address future integration and design challenges with superior structural performance
- Flexible modular architectures to accommodate different configurations, needs and uses
- Scalable production volumes

Role of Steel in Future Mobility

Steel: The Material of Choice

			dreemouse das Emissions	
	$kg CO_2 e / kg$	Estimated Part	North America Primary Production	
Carlos -		Weight (kg)	kg CO ₂ e	
Mild Steel	1.9	100	190	
AHSS	1.9	75	143	
Aluminum	8.9	67	596	
Magnesium	30.5	50	1525	
CFRP	22	45	990	

Current Average

Greenhouse Gas Emissions

Material Production GHG Emissions for Common Body Structure and Closure Materials Accounting for Estimated Part Mass Reduction

St Source: SMDI, "The Importance of the Production Phase in Vehicle Life Cycle GHG Emissions," Southfield, MI, USA, 1 Mar 2016 Al Source: The Al Assoc. "The Environmental Footprint of Semi-Finished Aluminum Products in North America: A Life Cycle Assessment Report." Dec. 2013 Mg & CFRP Source: Geyer, Roland University of California Santa Barbara, "Automotive Materials Greenhouse Gas Comparison Model", V4.0 Oct. 2013

GREAT DESIGNS IN

Presentations will be available for download on SMDI's website on Wednesday, May 22