GREAT DESIGNS IN

Presentations will be available for download on SMDI's website on Wednesday, May 22

GREAT DESIGNS IN

BENTELER AUTOMOBILTECHNIK

BUSINESS UNIT STRUCTURES

AGENDA

TOPIC

BENTELER IN GENERAL Structure Figures

NEW HOT FORM MATERIAL BTR 2000

AVOID LASER CUTTING OF HF PARTS

HOT FORMING PROCESS

Closed HF Structure

COLD FORMED GEN III MATERIAL OUTLOOK

Material Simulations Tool trials Next steps

<u>SPEAKER</u>

Paul Deller

Paul Deller

Paul Deller

Franz Schaefers

Franz Schaefers

AGENDA

TOPIC

BENTELER IN GENERAL Structure Figures

NEW HOT FORM MATERIAL BTR 2000

AVOID LASER CUTTING OF HF PARTS Adiabatic punching

HOT FORMING PROCESS

Closed HF Structure

COLD FORMED GEN III MATERIAL OUTLOOK

Material Simulations Tool trials Next steps

GDIS

SPEAKER

Paul Deller

Paul Deller

Paul Deller

Franz Schaefers

Franz Schaefers

BENTELER IN GENERAL

BENTELER HISTORY COURAGE. AMBITION. RESPECT. SINCE 1876.

GD	15
----	----

1876 Carl Benteler opens an ironmongery store in Bielefeld, Germany	1935 First major ord for the automo industry	er tive	2002 First plant of BENTELER Automotive in China		2015 BENTELER Steel/ T opens its first US tube plant in Sh Louisiana	ūbe –based reveport,	2017 BENTELER Automotive founds Business Unit "E-Mobility"
1916 Purchase engineeri plant, two later start productio	of an ng o years of tube n	1980 First plant of BENTELER Automotive in the US		2010 Foundation of BENTELER International Ad Salzburg, Austria	ĵ,	2015 BENTELER Dis opens a cent in Duisburg, with Europe high-rack st	tribution tral warehouse Germany, 's biggest orage for tubes

BENTELER IN NUMBERS

BENTELER Group

BENTELER Automotive

EMPLOYEES	about 30,000		about 26,000
LOCATIONS	141 in 38 countries		74 plants in 24 countries
SALES	8,072 € bn.		6,304 € bn.
	IN DIVISIONS Automotive Steel/Tube Distribution	76 % 15 % 9 %	
INVESTMENT	429 € million		370 € million
R&D	87 € million		
PATENT APPLICATIONS	81		
NEW PLANTS IN 2017	5 in China 1 in Czech Republic 1 in Brazil		

BENTELER AUTOMOTIVE PORTFOLIO

As a competent development partner we create individual solutions together with our customers.

STRUCTURES

Lightweight solutions for vehicle structures

CHASSIS & MODULES

Lightweight optimized suspension components as well as the development and assembly of highly complex modules

ENGINE & EXHAUST SYSTEMS

Powertrain systems and components to reduce emissions

ELECTRO-MOBILITY

Complete and lightweight optimized system solutions for new electric vehicles

MECHANICAL ENGINEERING

Innovative machines, systems and tools for the automotive industry

LIGHTWEIGHT PROTECTION

Development and production of protective solutions for various customers and market segments

AGENDA

TOPIC

BENTELER IN GENERAL Structure Figures

NEW HOT FORM MATERIAL BTR 2000

AVOID LASER CUTTING OF HF PARTS Adiabatic punching

HOT FORMING PROCESS

Closed HF Structure

COLD FORMED GEN III MATERIAL OUTLOOK

Material Simulations Tool trials Next steps

SPEAKER

Paul Deller

Paul Deller

Paul Deller

Franz Schaefers

Franz Schaefers

NEW HOT FORM MATERIAL BTR 2000 TARGET / MOTIVATION

10

NEW HOT FORM MATERIAL BTR 2000 TIMING

NEW HOT FORM MATERIAL BTR 2000 TECHNICAL INFORMATION

	BTR165 t=1.8mm press-hardened	BTR165 t=1.8mm press-hardened + KTL	BTR2000 t=1.8mm press-hardened	BTR2000 t=1.8mm press-hardened + KTL
R _{p0,2} [MPa] > 1200/1300	1020	1140	1360	1540
R _m [MPa] > 2000/1800	1600	1520	2040	1850
A ₃₀ [%] > 6	8.7	9.0	8.6	8.8

KTL = Cathodic dip painting

NEW HOT FORM MATERIAL BTR 2000 TECHNICAL INFORMATION

CMS front Pole Test

Velocity: 15km/h / Mass: 1200kg / Pole-diameter: 178mm / t=1,8mm

BTR165

BTR2000

NEW HOT FORM MATERIAL BTR 2000 TECHNICAL INFORMATION

CMS front Pole Test

Velocity: 15km/h / Mass: 1200kg / Pole-diameter: 178mm / t=1,8mm

Energy - Displacement

Force absorption is increased by 13%

Energy absorption is increased by 9%

AGENDA

TOPIC

BENTELER IN GENERAL Structure Figures

NEW HOT FORM MATERIAL BTR 2000

AVOID LASER CUTTING OF HF PARTS

HOT FORMING PROCESS

Closed HF Structure

COLD FORMED GEN III MATERIAL OUTLOOK

Material Simulations Tool trials Next steps

SPEAKER

Paul Deller

Paul Deller

Paul Deller

Franz Schaefers

Franz Schaefers

AVOID LASER CUTTING OF HF PARTS TARGET / MOTIVATION

Target	Solution	Process			<u>us</u>
 Reducing/Eliminate Laser cutting 	Adiabatic punching for hot formed coated	 Using the BENTELER Impact Actuator (BIA) 			H fir
 Reducing Investment 		 Accelerating the punch to a minimum impact speed > 6 m/s 			A fro
 Reducing part cost 	boron steel	<u>Milestones</u>		ć	S
		Project Start	III. QRT 2016		
		Project End (RL6)	II. QRT 2019		
		 Current 	RL 5		
ocess Flow					

stomer Benefit / Motivation

- lardened sheet-metal-parts, nished without Lasering
- pplicable on hot formed parts om boron steel, in particular om pre-coated steel sheets
- substitute for small-area Laser utting

Pr

AVOID LASER CUTTING OF HF PARTS TIMING

AVOID LASER CUTTING OF HF PARTS CONCEPT

GDIS

Prototype Test Rig

Pre-serial Machine

AGENDA

TOPIC

BENTELER IN GENERAL Structure Figures

NEW HOT FORM MATERIAL BTR 2000

AVOID LASER CUTTING OF HF PARTS Adiabatic punching

HOT FORMING PROCESS

Closed HF Structure

COLD FORMED GEN III MATERIAL OUTLOOK

Material Simulations Tool trials Next steps

SPEAKER

Paul Deller

Paul Deller

Paul Deller

Franz Schaefers

Franz Schaefers

HOT FORMING PROCESS CLOSED HOT FORMING STRUCTURE

GDIS

Substitution of crash frame profile with closed hot-formed steel profile in outer frame.

Targets:

- ⇒ Comparable weight
- ⇒ Cost reduction
- ⇒ Same crash performance
- ⇒ Improved life cycle assessment

First closed hot-forming design

HOT FORMING PROCESS CLOSED HOT FORMING STRUCTURE

Advantages

- Reduced material cost
- Cost efficient lightweight
- Global material availability
- Standardized hot form process
- Technology for high volume production
- Variable cross sections
- Function integration
- Crash optimization

HOT FORMING PROCESS CLOSED HOT FORMING STRUCTURE

GDIS

HOT FORMING PROCESS CLOSED HOT FORMING STRUCTURE SIMULATIONS

No intrusion in battery at 100 kN crush test with simple beading design.

GDIS

HOT FORMING PROCESS CLOSED HOT FORMING STRUCTURE STATUS OF DEVELPMENT

Prototyping Successful prototyping of closed hot-formed profile

 AlSi-coated press hardening steel (> 1400 MPa)

Performance Tests

Successful performance tests for quasi-static loads and crash loads

3D Geometry

Possible difficulties with close tolerances for long profile geometries due to warping after hot forming

 Warping simulation ongoing

Material Testing

1_650°C_ 2_650°C_ 3_650°C_

1_600°C 2_600°C 3_600°C

Investigation of hardness, material strength and micro structure

 Fulfilment of prototype targets

AGENDA

TOPIC

BENTELER IN GENERAL Structure Figures

NEW HOT FORM MATERIAL BTR 2000

AVOID LASER CUTTING OF HF PARTS Adiabatic punching

HOT FORMING PROCESS

Closed HF Structure

COLD FORMED GEN III MATERIAL OUTLOOK

Material Simulations Tool trials Next steps

SPEAKER

Paul Deller

Paul Deller

Paul Deller

Franz Schaefers

Franz Schaefers

GDIS

<u>Overview</u>

Source: SSAB

Tooling concept:

GDIS

Overview / results of material simulations

MATERIAL	MATERIAL TYPE	SIMULATION OK / NOK	TOOL TRIAL OK / NOK
Mat. 01: YS 700 - / TS 1050 -	DH	OK	OK
Mat. 02: YS 850 - / TS 1180 -	DH	NOK	OK
Mat. 03: YS 700 - / TS 1020 - (GI60/60)	CP	OK	OK
Mat. 04: YS 450 - / TS 950 -	TWIP	OK	OK
Mat. 05: YS 600 - / TS 980 -	DH	OK	OK
Mat. 06: YS 850- / TS 1180 -	TRIP	NOK	OK
Mat. 07: YS 600 - / TS 980 -	TRIP	OK	OK
Mat. 08: YS 850 - / TS 1180 -	TRIP	NOK	OK
Mat. 09: YS 1130 - / TS 1470 -	DP	NOK	NOK
Mat. 10: YS 850 - / TS 1180 -	DH	OK	NOK
Mat. 11: YS 700 - / TS 980	DH	OK	OK
Mat. 12: YS 780 - / TS 980 -	CP	NOK	OK
Mat. 13: YS 900 - / TS 1180	CP	NOK	OK
Mat. 14: YS 590 - / TS 980 - (GI70/70)	DP	OK	OK

Simulations based on a current B-Pillar design.

NOK simulations = Part geometry changes needed to achieve OK results (NOK = cracks, NOK = risk of cracks)

GDIS

Simulation result shown based on one material:

GDIS

Simulation result shown based on one material:

GDIS

32

GDIS

Measurement result shown based on one material:

GDIS

Tool trial results:

Material 3

Material 7

Material 10

GDIS

Potential weight reduction: RESULT COMPARISON BASE DP980 VS MATERIAL 2

Material 2 (Dual phase steel, YS 850, TS 1180)

2.290

1.30

Next steps / Validation process at BENTELER:

- Measuring of all produced parts at BENTELER plant Talle, Paderborn in regards to:
 - Part geometry
 - Spring back
 - · / ...
- Tool design modifications to reduce / avoid spring back
- Welding trials
 - First welding trials with material 2 & 10 (Due to highest potential weight reduction)
 - Planned closing plate: DP600, 1mm thickness
 - SEP1220-2 (spot welding) information from steel supplier needed
 - Planned start: Week 25/2019

GDIS

MANY THANKS FOR YOUR ATTENTION!

ANY ADDITIONAL QUESTION / TOPIC COULD BE DISCUSSED IN THE BOOTH!

GDIS

CONTACT

Paul Deller Customer Engineering Manager NAO Division Automotive Business Unit Structures

BENTELER Auburn Hills 2650 N. Opdyke Rd, Auburn Hills MI 48326 USA

Phone: +1 248 364-7297 Mobile: +1 248 4107877 E-Mail: paul.deller@benteler.com www.benteler.com

CONTACT

Franz Schaefers Customer Engineering Manager Global Division Automotive Business Unit Structures

BENTELER Automobiltechnik GmbH An der Talle 27-31 33102 Paderborn Germany

Phone: +49 5254 81 303646 Mobile: +49 172 6377813 E-Mail: franz.schaefers@benteler.com www.benteler.com

These documents are to be used for presentation purposes only. The holder of the copyrights is BENTELER International AG. These materials may not be distributed or used, either wholly or in part, without the explicit approval of BENTELER International AG.

GREAT DESIGNS IN

Presentations will be available for download on SMDI's website on Wednesday, May 22