GREAT DESIGNS IN

LIGHTWEIGHT STEEL ENGINE CRADLE TECHNOLOGIES

Paul McKune

1

GDIS LIGHTWEIGHT STEEL ENGINE CRADLE CONTENT

Introduction to Martinrea

- A2Mac1 Engine Cradle Benchmarking Study
- Optimized Engine Cradle
 - Baseline Design
 - Ideas Considered
 - CAE Validation
 - Final Optimized Design
 - Mass and Cost Comparison
 - Manufacturing Feasibility

Summary / Conclusions

www.martinrea.com

Leading Tier One automotive supplier in metal forming, fluid management systems and aluminum parts

One of the fastest growing automotive parts suppliers in the past 15 years (\$0 to ~\$4.0 billion in sales)

Headquartered in Canada and operating 44 manufacturing facilities with over 9 million square feet of manufacturing space and 15,000 motivated employees in 9 countries: Canada, United States, Mexico, Brazil, Germany, Slovakia, Spain, China, and Japan.

PRODUCTS / CAPABILITIES

ENGINE CRADLE BENCHMARKING – SIZES

ENGINE CRADLE BENCHMARKING - MATERIALS

BMW 5 Series Mass = 16.8 kg

> Audi Q7 Mass = 21.4 kg

Mass = 27.8 kg

ENGINE CRADLE BENCHMARKING – WEIGHTS

ENGINE CRADLE BENCHMARKING – NEW 'MEDIUM' SIZE GDIS

2013 BMW 3 Series

2018 Kia Stinger

2015 Hyundai Genesis

2018 Audi A7

MEDIUM SIZE ENGINE CRADLE OBSERVATIONS

Audi A7

- Large steel X-brace
- 2 hydroformed tubes

BMW 3-Series

- 6 tubes configuration
- 3 hydroformed

Hyundai/Kia

Heavy use of
 lightening holes

GDIS

Genesis

Stinger

ENGINE CRADLE BENCHMARKING - SIZES

MURANO & SORENTO CRADLE COMPARISON

2015 Nissan Murano Large Engine Cradle Weight: 37 kg 2017 Kia Sorento Small Engine Cradle Weight: 18 kg

ENGINE CRADLE BENCHMARKING CONCLUSIONS

- 3 Sizes: Small, Medium and Large
- 3 Material Configurations: Steel, Aluminum and Hybrid
- Potential mass reduction enablers: Tubes, X-braces, and Lightening Holes
- Aluminum mainly used for large engine cradles

CRADLE VS VEHICLE WEIGHT

OPTIMIZED ENGINE CRADLE – BASELINE DESIGN

OPTIMIZED ENGINE CRADLE – IDEAS CONSIDERED

1. Lap Weld to Butt Weld

2. Gauge Optimization

undeur Pitd ement Thickness - 4000E+00 - 3000E+00 - 2000E+00 - 2000E+00 - 1000E+00 No reals w = 4000E+00 m = 1000E+00

Strength Driven Parts

Stiffness Driven Parts

4. Tailored Blank Rings

5. Light Front Cross Member

OPTIMIZED ENGINE CRADLE – IDEAS NOT CONSIDERED

OPTIMIZED ENGINE CRADLE – CAE VALIDATION

Strength

Stiffness

Load	Baseline	Optimized Design		
Location/Direction	Design	Percent Improvement		
	(%)	(%)		
HandleBushLHSX	100	4.74		
HandleBushLHSY	100	2.53		
HandleBushLHSZ	100	1.77		
HandleBushRHSX	100	4.83		
HandleBushRHSY	100	2.26		
HandleBushRHSZ	100	2.01		
RideBushLHSX	100	9.04		
RideBushLHSY	100	12.65		
RideBushLHSZ	100	16.87		
RideBushRHSX	100	9.22		
RideBushRHSY	100	11.63		
RideBushRHSZ	100	15.91		
TieRodLHSX	100	43.87		
TieRodLHSY	100	10.39		
TieRodLHSZ	100	11.76		
TieRodRHSX	100	42.95		
TieRodRHSY	100	10.39		
TieRodRHSZ	100	10.79		
StabBarLHSX	100	9.20		
StabBarLHSY	100	2.36		
StabBarLHSZ	100	15.85		
StabBarRHSX	100	9.41		
StabBarRHSY	100	2.67		
StabBarRHSZ	100	15.61		
RrPendulumX	100	3.58		
RrPendulumY	100	7.22		
RrPendulumZ	100	4.25		

OPTIMIZED ENGINE CRADLE – FINAL DESIGN

OPTIMIZED ENGINE CRADLE - EBOM MASS COMPARISON GDIS

Component	Mass	Opt Mass	Mass Save	Part Count
	(kg)	(kg)	(kg)	
Engine Cradle Assembly	25.33	21.52	3.81	43
Side Rail Upper (lh/rh)	5.50	6.04	-0.54	2
Side Rail Lower (lh/rh)	4.94	4.25	0.69	2
Rear Cross Member Upper	1.52	1.58	-0.06	1
Rear Cross Member Lower	1.44	1.30	0.14	1
Front Cross Member Upper	1.70	0.81	0.89	1
Front Cross Member Lower	1.52	0.72	0.80	1
Stab Bar Mounts (lh/rh)	0.86	0.50	0.36	2
Stab Bar Reinforcements (lh/rh)	0.22	0.31	-0.09	2
Drive Train Bracket	1.02	0.98	0.05	1
Triangle Bracket	0.03	0.03	0.00	1
Side Deflector Upper (Ih/rh)	0.82	0.57	0.25	2
Side Deflector Lower (lh/rh)	0.60	0.32	0.28	2
Upper Crush Can (lh/rh)	0.84	0.46	0.38	2
Lower Crush Can (lh/rh)	0.80	0.44	0.36	2
Steering Brackets (lh/rh)	0.16	0.21	-0.05	2
Body Mount Sleeves (4)	1.04	1.04	0.00	4
Side Rail Inside Bracket (lh/rh)	0.52	0.25	0.27	2
Rear Body Locator Brackets (lh/rh)	0.30	0.22	0.08	2
LCA Front Threaded Spacers	0.32	0.32	0.00	4
LCA Rear Sleeves (lh/rh)	0.40	0.40	0.00	2
Front Cross Member Sleeve	0.07	0.07	0.00	1
Stabilizer Bar Sleeves	0.16	0.16	0.00	2
Welded Steering Bracket Nuts	0.04	0.04	0.00	2
Weld Material	0.51	0.51	0.00	
1 / / / / / /		11/		1. 1

OPTIMIZED ENGINE CRADLE - MASS/COST COMPARISON GDIS

1180 3RD GEN SIDE MEMBERS MANUFACTURING

SUMMARY / CONCLUSIONS

- 1) Benchmarking Study Recap
- 2) An optimized Engine Cradle was developed with a 15% mass savings versus the baseline design meeting the same packaging requirements
- Most of this mass savings was achieved with gauge optimization and 1180 3rd
 Gen application for Side Deflectors and tailored blank Side Members
- 4) The optimized steel cradle in this study was estimated to have an 11.3% cost premium over the baseline design due to additional material cost and the addition of 4 tailored blanks. This translates to \$3.36 / kg saved.
- 5) Next Steps: Prototype Cradle Assemblies & Corrosion Testing
- 6) Come to Martinrea for 'Great Designs in Steel'!!!

Thank You!

Contact:

Paul McKune

Technical Specialist

Martinrea

paul.mckune@martinrea.com

