Liquid Metal Embrittlement
A/SP Research Results Webinar

RAPID EVALUATION PROCEDURES

JULY 28, 2020
Liquid Metal Embrittlement
A/SP Research Results Webinar

Introduction: John Catterall
Vice President, Automotive Program
American Iron and Steel Institute
Liquid Metal Embrittlement
A/SP Research Results Webinar

Presenter: Michael Karagoulis, PhD
Master Mechanic - Weld Development, Global ME
Body-in-White
General Motors Corporation
Examples of LME Cracking in Automotive Welds

- Resistance Spot Weld
- Gas Metal Arc Weld (GMAW)
- Drawn Arc Weld Stud

Top View

Bottom View
What Causes LME? (liquid metal embrittlement)

LME is the instantaneous, preferential dissolution of steel grain boundaries, due to the simultaneous action of tensile strain, a foreign liquid metal, and a susceptible microstructure.

LME cracking occurs when 3 specific enabling factors are all switched ON:

- Liquid Metal
- Sensitive Microstructure
- Tensile Strain

LME occurs by sudden, deep zinc penetration into the steel grain boundaries.

Kang, Cho, Lee, DeCooman 2016
Some Quick Metallurgy...

General melting point of steels
~1500°C (2700°F)

General boiling point of zinc coating
900°C (1650°F)

Expected temperature range of LME

General melting point of zinc coating
420°C (790°F)

Why the Sudden Interest in LME by Auto Industry?

Unfortunately, for most steel welding, 400 – 900°C is unavoidable within the temperature range of the Heat-Affected Zone (HAZ).

Not All Galvanized Steels are Susceptible to LME

The “Banana Chart” of Automotive Body Steels

- IF
- BH
- HSLA
- TRIP, Gen 3
- DP, CP, MP
- MS & PHS

Elongation (% stretch) vs Tensile Strength (MPa)

Empirical region of Concern for LME
A Practical Problem-Solving Strategy for LME:

1. Figure out how to reliably Turn On LME
 - Develop laboratory procedure(s) which will activate LME according to the Venn Diagram
 - Characterize specific combinations of Coating, Temperature, Strain, and Material
 - Establish LME metrics or ratings for steel

2. Figure out how to reliably Turn Off LME
 - Modify chemistry?
 - Modify microstructure?
 - Modify coating?
 - Modify welding?
Turning On the LME Reaction, using a Gleeble

A/SP Sponsored Gleeble Testing (Hot Tensile Testing) at OSU
Isolate the LME Cracking Effect away from welding variables

Result: Two kinds of LME in autobody steels were identified:
Low Temperature, versus High Temperature
Turning On the LME Reaction, using a Spot Welder

Challenges:

How to create the same Temperature and Strain conditions of the Gleeble machine, using a simple spot weld machine?

1. Creating Tensile Strain using an applied compressive load
2. Creating the LME Activation Temperature at the tensile strain location.
3. Repeatability
 A. Spot welding dynamic variables:
 i. Current density
 ii. Force and pressure on Tip Faces
 iii. Expulsion
LME Cracks Can Occur at Different Weld Regions

Crack Location Map used for test interpretation

- **Type A**: Surface Crack Inside the 6mm Electrode Imprint
- **Type B**: Surface Crack Outside the Electrode Imprint
- **Type C**: Interfacial Surface Crack
- **Type D**: Surface Crack In the Outer Transition Imprint

Crack Types:

- A
- B
- C
- D
Two Types of LME are Most Prevalent

Type A
Cracks within Electrode Imprint

Type B
Cracks around Periphery
But Type B has Been Shown to Degrade Weld Strength the Most

1.5 orders of magnitude reduction in fatigue life
Experimental Strategy to Turn On Type B Cracking

1. Maximize Tensile Strain at Type B Crack Location
2. Control HAZ Temperature at Type B Crack Location
3. Suppress Weld Expulsion
1. Designing in Surface Tensile Strains using Applied Compression:

How Tensile Strain occurs during Electrode Indentation
Principle: “Hammock Strain”

The whale sling fabric sees tension, even under compressive weight of the whale.

“Free Willy” Movie 1993
2. Achieving the “Gleeble Temperature” at the Crack Site Requires Creating a Very Wide Heat Affected Zone

Standard GM Weld Time For 1.6mm Sheet

- Weld Time = 640ms
- HAZ diameter ~ 8.5mm

Type B Crack Site (needs 500 – 600°C here to initiate the crack)

- Weld Time = 1320ms
- HAZ diameter ~ 10.7mm

These target crack sites did not reach initiation temperature

"Gleeble-ized" Weld Time For 1.6mm Sheet

For 1.6mm Sheet
3. Improving Test Repeatability Requires Suppression of Weld Expulsion.

Lengthening weld time naturally increases the expulsion tendency of weld metal. Expulsion causes scatter in LME results, due to the chaotic disturbance of expulsion on momentary weld force and power. For repeatable LME cracking, expulsion must be suppressed as long as possible.

The most effective way to suppress expulsion in this case is to program the welder with **Progressive Sloping Impulses**.
RESULTS

A Tale of Two Steels:

3rd Gen 980 (RA) Hot Dip Galvanized Steels (GI) with high elongation (HE)

Steel “F”
1.4 mm CR980T-600Y-RA-HE-GI

Steel Lot #154
1.6 mm CR980T-600Y-RA-HE-GI
Test Results for Bad and Good Steels

Steel “F”
CR980T-600Y-RA-HE-GI
1.4mm

Steel Lot #154
CR980T-600Y-RA-HE-GI
1.6mm

ASP “F” 7.0ka

ASP #154 (HDG) 1.60mm 7.0ka
Test Results for Bad and Good Steels

Steel “F”
CR980T-600Y-RA-HE-GI
1.4mm

Steel Lot #154
CR980T-600Y-RA-HE-GI
1.6mm

ASP “F” 7.5ka

ASP #154 (HDG) 1.60mm 7.5ka
Test Results for Bad and Good Steels

Steel “F”
CR980T-600Y-RA-HE-GI
1.4mm

Steel Lot #154
CR980T-600Y-RA-HE-GI
1.6mm

ASP “F” 8.0ka

ASP #154 (HDG) 1.60mm 8.0ka
Test Results for Bad and Good Steels

Steel “F”
CR980T-600Y-RA-HE-GI
1.4mm

Steel Lot #154
CR980T-600Y-RA-HE-GI
1.6mm

ASP “F” 8.5ka

ASP #154 (HDG) 1.60mm 8.5ka
Test Results for Bad and Good Steels

Steel “F”
CR980T-600Y-RA-HE-GI
1.4mm

Steel Lot #154
CR980T-600Y-RA-HE-GI
1.6mm

ASP “F” 9.0ka

ASP #154 (HDG) 1.60mm 9.0ka
Test Results for Bad and Good Steels

Steel “F”
CR980T-600Y-RA-HE-GI
1.4mm

Steel Lot #154
CR980T-600Y-RA-HE-GI
1.6mm

ASP “F” 9.5ka

ASP #154 (HDG) 1.60mm 9.5ka
Test Results for Bad and Good Steels

Steel “F”
CR980T-600Y-RA-HE-GI
1.4mm

Steel Lot #154
CR980T-600Y-RA-HE-GI
1.6mm

ASP “F” 10.0ka

ASP #154 (HDG) 1.60mm 10.0ka
Test Results for Bad and Good Steels

Steel “F”
CR980T-600Y-RA-HE-GI
1.4mm

Steel Lot #154
CR980T-600Y-RA-HE-GI
1.6mm

ASP “F” 10.5ka

ASP #154 (HDG) 1.60mm 10.5ka
Test Results for Bad and Good Steels

Steel “F”
CR980T-600Y-RA-HE-GI
1.4mm

Steel Lot #154
CR980T-600Y-RA-HE-GI
1.6mm

ASP “F” 11.0ka

ASP #154 (HDG) 1.60mm 11.0ka
Test Results for Bad and Good Steels

Steel “F”
CR980T-600Y-RA-HE-GI
1.4mm

Steel Lot #154
CR980T-600Y-RA-HE-GI
1.6mm
How to Interpret Results

General Acceptability of LME Cracks (By Location and Depth)

(These acceptance criteria apply to this test procedure only, and do not imply a product quality standard)

<table>
<thead>
<tr>
<th>Crack Location:</th>
<th>Type A</th>
<th>Type B</th>
<th>Type C</th>
<th>Type D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative Test Current</td>
<td>High Temp LME (>650°C)</td>
<td>Low Temp LME (<650°C)</td>
<td>Interfacial LME (? rare)</td>
<td>Threshold Temp LME (~650°C)</td>
</tr>
<tr>
<td>Below Expulsion</td>
<td>OK if depth less than 10%</td>
<td>NOK</td>
<td>NOK</td>
<td>NOK</td>
</tr>
<tr>
<td>At (or above) Expulsion</td>
<td>OK</td>
<td>NOK</td>
<td>NOK</td>
<td>OK if depth less than 5%</td>
</tr>
</tbody>
</table>
Composite 3rd Gen LME Results for 2019

A/SP Rapid LME Test Results for 2019 Budget Year

Michael Karagoulis - Project Leader

LME Test Log Sheet

As of May 5, 2020

<table>
<thead>
<tr>
<th>Grade</th>
<th>Thick</th>
<th>Coat</th>
<th>Lot #</th>
<th>Test Amperage (ka)</th>
<th>LME ka rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>EG</td>
<td>161</td>
<td></td>
<td>EXP 50% 5% 30% 10% 10% 20% 40% 50% 40% 50%</td>
<td>0.5 L</td>
</tr>
<tr>
<td>1.6</td>
<td>EG</td>
<td>163</td>
<td></td>
<td>EXP 60% 20% 10% 10% 60% 60% 100% 60% 60% 100%</td>
<td>-1.0 L</td>
</tr>
<tr>
<td>1.0</td>
<td>GI</td>
<td>155</td>
<td></td>
<td>EXP 20% 5% 40%</td>
<td>0.0 M</td>
</tr>
<tr>
<td>1.6</td>
<td>GI</td>
<td>154</td>
<td></td>
<td>EXP 50% 30% 30% 40% 5% 10%</td>
<td>1.5 M</td>
</tr>
<tr>
<td>1.4</td>
<td>GI</td>
<td>"F"</td>
<td></td>
<td>EXP 50% 100% 100% 50% 100% 100% 90% 100%</td>
<td>-1.5 L</td>
</tr>
<tr>
<td>1.4</td>
<td>GI</td>
<td>116</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>GA</td>
<td>185</td>
<td></td>
<td>EXP 85% 60% 100% 50% 100% 20% 100% 100% 70%</td>
<td>0.1 L</td>
</tr>
<tr>
<td>1.6</td>
<td>GA</td>
<td>181</td>
<td></td>
<td>EXP 60% 40% 20% 5% 60% 90% 80% 100%</td>
<td>-0.1 L</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grade</th>
<th>Thick</th>
<th>Coat</th>
<th>Lot #</th>
<th>Test Amperage (ka)</th>
<th>LME ka rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>EG</td>
<td>178</td>
<td></td>
<td>EXP 70% 10% 70% 40% 20% 40% 20%</td>
<td>0.1 L</td>
</tr>
<tr>
<td>1.6</td>
<td>EG</td>
<td>179</td>
<td></td>
<td>EXP 70% 10% 70% 40% 20% 40% 20% 40% 40% 70% 10%</td>
<td>0.0 L</td>
</tr>
<tr>
<td>1.0</td>
<td>GI</td>
<td>166</td>
<td></td>
<td>EXP 10% 80% 20% 40% 20% 40% 40% 60% 50% 50%</td>
<td>-3.5 L</td>
</tr>
<tr>
<td>1.6</td>
<td>GI</td>
<td>107</td>
<td></td>
<td>EXP 10% 80% 20% 40% 20% 40% 40% 60% 50% 50%</td>
<td>-4.0 L</td>
</tr>
<tr>
<td>1.5</td>
<td>GI</td>
<td>"G"</td>
<td></td>
<td>EXP 40% 70% 80% 30% 10% 60% 60% 20% 10% 50% 80%</td>
<td>-1.0 L</td>
</tr>
<tr>
<td>1.0</td>
<td>GA</td>
<td>N.A.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6</td>
<td>GA</td>
<td>N.A.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Project Conclusions

• A rapid LME screening test was developed for material characterization
• Results correlated well with Gleeble-based LME testing
• A variety of coated 3rd Gen lots were tested
• Results indicate a wide spectrum of LME sensitivity currently exists in the 3rd Gen supply base
• The test procedure has been made available to A/SP members to do their own material studies
• Galvanized (GI), electrogalvanized (EG) and galvanealed (GA) zinc coatings were evaluated, however limited testing did not suggest one coating was better than another.
Value Proposition

- The speed and low infrastructure of the rapid test procedure puts LME screening within reach of many:
 - A/SP member companies
 - Test labs
 - Universities

- Steelmakers are already applying the procedure to develop LME resistant steels, especially susceptibility to Low Temperature LME (type B cracking)

- Automakers are free to use the results for internal testing

- The procedure facilitates repeatable fabrication of cracked welds needed for mechanical testing, (for CAE studies, etc.)
Future Plans: Practical Application Challenges

• Continue the LME screening matrix
 o Other materials?
 • High Strength Low Alloy (HSLA), and Martensitic (MS) appear to be immune to Type B LME
 • 3rd Gen (RA), Dual Phase (DP), Multi-Phase (MP), and Complex Phase (CP) are not immune to Type B LME
 • Coating variables

• Use the LME scores to study whether LME susceptibility matters to vehicle performance
 o B.O.B & W.O.W. tests (best of the best vs. worst of the worst)
 o Various RSW joint configurations
 o Does LME Exist with other common welding processes
 • Gas Metal Arc Welding?
 • Drawn arc?
 • Laser?

Bead-on-plate GMAW weld on a material with high LME susceptibility
TO OBTAIN WEBINAR DOWNLOADS

Visit: www.AutoSteel.org
Thank You / For More Information

Contacts:

Kevin Teng – Zhenke.teng@gm.com
A/SP LME Project Leader
(586) 449-4889

Hassan Ghassemi-Armaki – Hassan.ghassemi@arcelormittal.com
A/SP Joining Team Lead
(219) 399-5860

Eric McCarty – emccarty@steel.org
A/SP Project Manager
(248) 945-4778