Strategic Steel Application in the Acura NSX Space Frame

Kurtis Horner
Honda R&D Americas, Inc.
Presentation Contents

- Background
- Design Requirements
- Technology Selection
- Three Dimensional Hot Bending and Direct Quench (3DQ) Technology
- Summary and Conclusion
Recreating an Icon

New Sports eXperimental

NSX
Human-centered

Rigid & Lightweight
- All aluminum body

Visibility & Stability
- Advanced sport package

Quality, Reliability and Durability
New Sports eXperience

- Instant Acceleration (Incredible G-feeling)
- Direct Yaw Control (Super Handling)
- Integrated Dynamics System (Wide Range)

Grand Concept

Driver-centric Cockpit
- Superior Visibility
- Ergonomic with Simple Driver Interface
- Secure Driver Fit and Freedom of Movement

Peak Performance
- Lap Time
- 0-100 kph

Timeless Sports Car Values
New Sports eXperience

- Driver-centric
- Styling
- Instant Response
- Honda DNA
- Precision Craftsmanship
New Sports eXperience

- Driver-centric
 - Package
 - Visibility

- Styling
 - Thin A Pillar
 - Sash-less Door

- Instant Response
 - High Rigidity

- Honda DNA
 - Crashworthiness
 - No-Sacrifice Supercar DQR

- Precision Craftsmanship
 - High Accuracy
 - High Efficiency
New Sports eXperience

A Pillar Design Concept Aligned with Vehicle Concept

- **Driver-centric**
 - Styling
 - Instant Response
 - Honda DNA
 - Precision Craftsmanship

Minimize Weight and View Obstructions

Maximize Interior Space and Safety
Interior Packaging Concept

- Compact High Strength Steel Front Roof Rail
- Optimized visibility
- Low instrument panel surface
- Thin A Pillar
- Thin Pillar
- Low Dash
Forward Visibility

NSX

Standard Car

Competitor
Small design space and high accuracy requirements for surrounding part interfaces

- Exterior Garnish
- Seal
- Door Glass
- Air Bag
- Front Windshield
- Interior Garnish
- Harness
Correct Material in Correct Location

<table>
<thead>
<tr>
<th>Material</th>
<th>PHS</th>
<th>Hydro-Forming</th>
<th>Aluminum Casting</th>
<th>Aluminum Extrusion</th>
<th>3DQ 3-D Quench</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydro-Forming</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminum Casting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminum Extrusion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3DQ 3-D Quench</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Performance**:
 - Steel: ![Steel](image1)
 - Aluminum: ![Aluminum](image2)
 - 3DQ: ![3DQ](image3)

- **Weight**:
 - Steel: ![Steel](image1)
 - Aluminum: ![Aluminum](image2)
 - 3DQ: ![3DQ](image3)

- **Pillar Size**:
 - Steel: ![Steel](image1)
 - Aluminum: ![Aluminum](image2)
 - 3DQ: ![3DQ](image3)

- **Productivity**:
 - Steel: ![Steel](image1)
 - Aluminum: ![Aluminum](image2)
 - 3DQ: ![3DQ](image3)

Optimum material selection

- **Weight**:
 - Steel: ![Steel](image1)
 - Aluminum: ![Aluminum](image2)

- **Width**:
 - Steel: ![Steel](image1)
 - Aluminum: ![Aluminum](image2)

- **3DQ**:
 - ![3DQ](image1)

- **6063T6AL Extrusion**:
 - ![6063T6AL Extrusion](image1)
3DQ Technology Considerations

Strengths

<table>
<thead>
<tr>
<th>Material Properties</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• High Strength</td>
<td></td>
</tr>
<tr>
<td>• High Stiffness</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Productivity</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Fast maturation</td>
<td></td>
</tr>
<tr>
<td>• Low die investment</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Low Weight</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Hollow tubular structure</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable Curvature</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Conforms to styling shape</td>
<td></td>
</tr>
</tbody>
</table>

Design Challenges

<table>
<thead>
<tr>
<th>Constant Cross Section</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Cross section can not vary with mating part requirements</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fastening</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Laser welding</td>
<td></td>
</tr>
<tr>
<td>• Bolting</td>
<td></td>
</tr>
<tr>
<td>• Projection stud welding</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Corrosion</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Multi-material joining</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part Accuracy</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Assembly sequence</td>
<td></td>
</tr>
<tr>
<td>• Manufacturing process</td>
<td></td>
</tr>
</tbody>
</table>
A-Pillar Construction Overview

Steel substructure separately e-coated to prevent corrosion

Sheet metal stampings transition to A-pillar structure

- **Bolts**
- **Laser Welds**
- **590 MPa Steel 1.4mm**
- **A356 T6 Aluminum Casting**
- **590 MPa Steel 2.0mm**
- **1500 MPa Steel 2.4mm**
Joining Challenges

Mechanical Joining Strategy

• Joining Location
• Optimize joint strength for each attachment
Crashworthiness – Achievement Summary

NSX meets NCAP world test mode standard, hybrid protection, and Honda safety commitment

<table>
<thead>
<tr>
<th>Mode</th>
<th>Target</th>
<th>Achievement (In-House Results)</th>
</tr>
</thead>
<tbody>
<tr>
<td>US NCAP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OVERALL</td>
<td>5 ★</td>
<td>5 ★</td>
</tr>
<tr>
<td>Front Collision</td>
<td>4 ★</td>
<td>4 ★</td>
</tr>
<tr>
<td>Side Collision</td>
<td>5 ★</td>
<td>5 ★</td>
</tr>
<tr>
<td>Roll over</td>
<td>5 ★</td>
<td>5 ★</td>
</tr>
<tr>
<td>EU NCAP (Collision Modes)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OVERALL</td>
<td>5 ★</td>
<td>5 ★</td>
</tr>
<tr>
<td>Front Collision</td>
<td>≥ 13.0 pts</td>
<td>13.8 pts</td>
</tr>
<tr>
<td>Side Collision</td>
<td>≥ 14.0 pts</td>
<td>16.0 pts</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roof Crush</td>
<td>FMVSS 216</td>
<td>OK</td>
</tr>
<tr>
<td>Pedestrian</td>
<td>GTR9 Regulation</td>
<td>OK</td>
</tr>
<tr>
<td>Honda Safety Commitment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUV Side Impact</td>
<td></td>
<td>OK</td>
</tr>
<tr>
<td>Side Pole at IPU location</td>
<td></td>
<td>OK</td>
</tr>
<tr>
<td>Car to Car (50kph) NSX vs MDX SUV</td>
<td>Cabin Integrity, Hybrid Protection</td>
<td>OK (CAE)</td>
</tr>
</tbody>
</table>

* ISOFIX, ISA, LDW, & AEB features are not applied
BIW Concept

New Sports eXperience

Driver-centric

Requirements
- Package
- Visibility

Styling

- Thin A Pillar
- Sash-less Door

Instant Response

- High Rigidity

Honda DNA

- Crashworthiness
- No-Sacrifice Supercar DQR

Precision Craftsmanship

- High Accuracy
- High Efficiency
A-Pillar Manufacturing Flow

1. Tube Making
2. 3DQ Process
3. Part Accuracy Check
4. Laser Cutting & Welding
5. ED Coating
6. AL Node Assembly
7. Quality Inspection
3DQ Process Overview

1. Feed Tube

2. Induction Heat Tube

3. Rapidly Quench Tube

4. Robotically Bend Tube
 - Multi axis robot
 - Numerical Controlled Path
3DQ Process Details

High Formability & Low Residual Stress

- No Wrinkling
- No Section Collapse
- No Spring Back
- No Delayed Fracture

Quenched Product

Processing Details:
- Tensile Strength > 1500 MPa
- Yield Strength > 980 MPa
Ultra high strength due to Martensitic grain structure

Heated Portion

Processing Details:
- Temperature > 850°C
- Tensile Strength ≈ 50 MPa
- Yield Strength ≈ 40 MPa

Processing Details:
- Tensile Strength > 1500 MPa
- Yield Strength > 980 MPa

Ultra high strength due to Martensitic grain structure

Support Device
Shielding Gas
Induction Coil
Water Jet

High Strength Tube

Processing Details:
- Tensile Strength ≈ 600 MPa
- Yield Strength ≈ 400 MPa
3DQ Production Line

3DQ can produce parts without dies and with minimal space.

<table>
<thead>
<tr>
<th>Process</th>
<th>Production Line Size</th>
<th>Dies</th>
</tr>
</thead>
<tbody>
<tr>
<td>2500ton Transfer Press</td>
<td></td>
<td> </td>
</tr>
<tr>
<td>3DQ</td>
<td></td>
<td>Dies are not used</td>
</tr>
</tbody>
</table>

At minimum, 4 processes are needed.
A-Pillar Construction Accuracy

Accuracy Correction Process

- **Start correction**
- Generate robot trajectory
- **3DQ process**
- Measure shape
- **NG**
- **OK**
- Finalize trajectory

Process trajectory correction achieves ±0.3mm accuracy

- **3DQ process**
- **Trajectory correction**
- Compensation check and correction for shape variation after every part
- **Shape measurement**
- 72 digital measurement points
Three-Dimensional Hot Bending and Direct Quench
Summary

New Sports eXperience

Driver-centric

Styling

Instant Response

Honda DNA

Precision Craftsmanship

Requirements

- Package
- Visibility
- Thin A Pillar
- Sash-less Door
- High Rigidity
- Crashworthiness
- No-Sacrifice Supercar DQR
- High Accuracy
- High Efficiency
Body Accuracy Strategy

Transverse Adjustment

Horizontal Adjustment

3DQ comp is the datum for the roof sub-comp
A-Pillar Achievement

Obstructed View Comparison

Obstructed View (Deg)

- NSX (1st Gen)
- NSX
- A
- B
- C

- 11.7
- 7.8
- 10.6
- 12.7
- 15.6

- 61% Smaller than average

Acura Internal Data
Conclusion

Utilization of the 3DQ Technology allowed us to achieve our goals

☑ Minimize Pillar Size
 Provided best in class obstructed view

☑ Maximize Interior Space
 Enabled low roof and interior packaging requirements

☑ Minimize Weight
 Best balance of performance and weight for NSX

☑ Achieve Occupant Safety
 Projected best in class safety performance

Ultra High Strength, Rigid Uniform Cross Section, the best option…
3-Dimensional Hot Bending and Direct Quench Technology.
Kurtis Horner
Honda R and D America’s Inc.
937.309.2205
Khorner@oh.hra.com