Lasers in Automotive – Innovations for Lightweighting and Fuel Economy

Jim Evangelista
Shiloh Industries
Future Lightweight Vehicle Structures
• **Major global automotive trends are leading to changes in materials**
 − Mega trend: Lightweighting
 − Continuous improvements in emissions and performance, with increased safety standards and political pressure leading the way

• **Various materials and new alloys will be employed**
 − Next generation steels and aluminum alloys, resins and plastics, magnesium, carbon fiber, etc.
 − OEM’s are trending towards a mixed material solution
 − More material mixes will be used in the coming decade as automakers move to meet increasing fuel economy, emissions and safety regulations

• **Joining of these new materials is the key to future assemblies**
 − Processes and businesses will change, and products will be combined into subassemblies and modules
 − There will be significant manufacturing challenges/differences compared to today
 − The automotive industry must develop the technical expertise to successfully manufacture products joining various materials
Enablers for Growth

• Both of the aluminum and steel industries next generation materials will move towards the upper right quadrant increasing strength and elongation.

• Casting alloys are following this trend with addition of increased temperature and fatigue life.

Typical and Next Generation Sheet Products
Multi-Material Body Structures

PHS ultra high-strength steel safety cage

Die cast aluminum shock towers joined to steel

Gen3 steel multi-piece cross members and rails with varying material thickness for improved energy management

Mixed-material underbody

Die cast aluminum longitudinal and cross members joined to steel body
Material Distribution

<table>
<thead>
<tr>
<th>Material</th>
<th>2015</th>
<th>2025</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEEL</td>
<td>60</td>
<td>54</td>
</tr>
<tr>
<td>ALUMINUM</td>
<td>11</td>
<td>17</td>
</tr>
</tbody>
</table>

Source: Ducker Worldwide
Multi-Material Body Structures

• By 2020, the next generation materials will start to appear on vehicles with wide acceptance anticipated for 2025
 - Companies that understand the methods to achieve the targeted properties will have a strategic advantage:
 - Effect of cutting, blanking and piercing on edge properties
 - Joining
 - Forming and lubrication requirements
 - Casting and grain structure
 - Corrosion effects

• Key technical development is required to be ready to navigate through this period
Summary

• Increasing safety, emissions and fuel economy regulations are driving the lightweighting megatrend
• New materials required for lightweighting will be more expensive
• New products must be designed as effective as they need to be
• New processes are required to manufacture products as efficiently as they can be
• New technology applications are required to produce affordable vehicles
Lasers
Enablers for Efficient
State-of-the-art Manufacturing
Lasers in Manufacturing

• Its unique properties make the laser an enabling tool for state of the art manufacturing
 – No mechanical forces
 – No inertia
 – High precision
 – Low thermal influence
 – Fast control
 – Easy automation
 – Adaptable to different processes
 – Adaptable to different materials
Laser Applications in Automotive

- **Remote applications**
- **Laser welding and brazing**
- **Welded blanks**

Body Shop

- **Cutting**
 - Cutting/trimming
 - Softening/hardening
 - Laser blanking from coil

- **Interior and Assembly**
 - Day/night designs
 - Marking
 - Drilling
 - Surface treatment

- **Short Pulse Laser Ablation & Drilling**

- **Lightweight Design**
 - Flange reduction
 - Integrated functions
 - Joining new materials

- **E Drives**
 - Battery production
 - Electric engines
 - Fuel cells

- **Powertrain**
 - Gear welding
 - Clutches
 - Differentials
 - Shifting forks

- **Powertrain**
 - Gear welding
Lightweight Designs

- The precision of remote laser welding enables new design opportunities:
 - Reduction of weight
 - Reduced flanges or flangeless designs
 - Integrated functions
 - Tailored parts possible, using different materials and thicknesses
Lasers in Manufacturing

• Laser Processing of Advanced Materials
 – Laser Cutting and Trimming
 – Laser Blanking
 – Annealing and Heat Treating
 – Laser Joining

• Ultra Short Pulse Laser
 – Laser Ablation
 – Marking
 – Drilling

• Additive Manufacturing
Lasers in Manufacturing

• Cutting
 – CFRP, Air Bag Fabrics
 – Castings and Extrusions
 – Laser Coil Blanking
Lasers in Manufacturing

- Softening of sectional areas for bending operations
- Improved crash performance of flange area
- Softening of belt at upper part of B-pillar
- Hardness adjustable to requirements
Lasers in Manufacturing

• Remote Laser Welding
Lasers in Manufacturing

Trifocal laser brazing for hot dipped zinc coating

- Very good gap bridge ability
- Very good appearance (Class A body)
- Higher process speed
- Low heat input
- Low pore and spatter rate
- Smooth surface
Lasers in Manufacturing

• Short Pulse Lasers

Short laser pulses of extremely high power produce an energy density so high that the material undergoes a rapid transformation from a solid to a combination of vaporizing boiling liquid or gas that expels material, usually in the form of a vapor plume.
Lasers in Manufacturing

- Short Pulse Lasers
 - Marking/Perforating
 - Ablation of surface coatings/films
 - Drilling/Surface structuring
Lasers in Manufacturing

• Laser Cleaning
 – Fastest growing new application
 – High processing speeds
 – Very successful in weld preparation
 – Effective in cleaning:
 – Oils (machining/fingerprints)
 – Soaps/cleaning agent residue
 – Rust inhibitors
 – Oxidation
 – Phosphate layers
Lasers in Manufacturing

Surface structuring for thermal joining of plastics to metallic parts without any adhesives!
Additive Manufacturing

- Additive Manufacturing (AM) is a process in which a three-dimensional object is created out of a digital model. The additive process builds up parts layer by layer.
- Several methods are available for this technology
 - Laser Metal Deposition (also known as direct metal deposition)
 - Laser Metal Fusion – LMF (commonly known as powderbed or 3D printing)
Additive Manufacturing

- Tooling produced with AM
 - Stamping dies
 - Conformal cooling tools for castings
 - Investment/sand casting masters

- Low volume modification of components

- Repair of tools, molds and components
Technical Advancements Enabling State-of-the-art Manufacturing

- Advances in laser technology
 - Lower cost/kW of laser systems
 - Higher beam quality
 - Short pulse width (nanosecond)
 - New process monitoring and controls
I would like to thank the following companies for supplying information, photos and videos used in this presentation. I would also like to thank them for providing the application labs supporting the development of our future products.

- Andritz Soutec
- IPG
- Jenoptik
- Laserline
- Trumpf
For More Information

Jim Evangelista
Shiloh Industries
734.738.1300
jim.evangelista@shiloh.com