2012–2013 AISI Officers

Chairman of the Board
Joseph A. Carrabba
President and CEO
Cliffs Natural Resources, Inc.

Vice Chairman
Michael T. Rehwinkel
Chief Executive Officer
EVRAZ North America

Vice Chairman
Regulo Salinas
Vice President
Ternium México

Vice Chairman
Michael Rippey
President and CEO
ArcelorMittal USA

Vice Chairman
John P. Surma
Chairman and CEO
United States Steel Corporation

President and Chief Executive Officer
Thomas J. Gibson
President and CEO
American Iron and Steel Institute

General Counsel and Secretary
Kevin M. Dempsey
Senior Vice President, Public Policy and General Counsel
American Iron and Steel Institute

Treasurer
Lawrence W. Kavanagh
President
Steel Market Development Institute
CONTENTS

Foreward

1 American Steel: Strength for Our Future
2 Building a Sustainable Future
4 Global Leader in Labor Productivity
6 Steel’s Presence Throughout America
 7 Automotive
 8 Construction
11 Container
12 Steel and National Security

14 Breakthrough Technologies
18 Directory of AISI and its Member Companies
33 Associate Members
34 2012–2013 Board of Directors

Photo courtesy of EVRAZ North America
A Message from AISI President and CEO Thomas J. Gibson

The American steel industry is essential to the quality of life that Americans enjoy. In the pages that follow, you will learn why the steel industry is fundamental to all forms of manufacturing and to the American economy. You will learn about an industry that is devoted to the highest safety standards. You will find a profile of an industry that is vital to America’s future, which is a reflection of the innovation of our member companies and their skilled workers. And you will also better understand our industry’s commitment to sustainability, which is reflected in our products and in our proven performance.

By advancing environmental stewardship, the American steel industry has established a level of sustainable performance that sets steel apart from other industrial sectors. Steel’s high recycling rate, which is greater than that of all other recyclable materials combined, is fundamental to energy and emissions savings as well as resource conservation. In addition, steel’s superior performance minimizes environmental impacts when measured through the entire life cycle. That is why our industry has achieved such remarkable progress in energy efficiency and emissions reductions.

Looking at steel applications, advanced high-strength steel is the automotive material that best addresses society’s need for fuel-efficient performance without compromising safety or affordability. In construction, steel is the material of choice because of its remarkable performance characteristics along with its environmentally friendly profile. And the safety and high recycling rate of steel cans make canned foods a highly desirable way for families to have nutritious and convenient meals. Steel is also essential to America’s energy and transportation systems and it is vital to our national and economic security.

In addition to this industry profile and the directory of AISI member companies that follows, we encourage you to visit www.steel.org to find out more about America’s high-tech, innovative and globally competitive steel industry.

Sincerely,

THOMAS J. GIBSON
President and CEO, American Iron and Steel Institute (AISI)
American Steel—Strength for Our Future

The American steel industry continues to be a cornerstone of the American economy.

The backbone of manufacturing, steel is a strategic industry, essential to America’s economic growth and stability. The steel sector helped build the face of America, engendering a sense of national pride through famous landmarks, such as the Golden Gate Bridge welcoming visitors to our western states, the St. Louis Arch at the crossroads of America and the Chrysler Building that gives a unique flourish to New York City’s skyline.

Not only is it an essential material in these American treasures, steel is fundamental to American society and our modern way of life. Our nation’s energy supply, transportation system, urban centers, clean water and safe food supply all depend on steel. Innovation and technology have transformed America’s 21st century steel industry into a world leader in quality, performance and sustainability.
Building a Sustainable Future

Along with its strong contributions to the nation’s economy and to American society, the steel industry is actively dedicated to advancing environmental stewardship. Steel’s superior performance minimizes environmental impacts when measured through the entire life cycle. Through the development and application of new steelmaking technologies and through the innovations of the workers on the plant floor, the industry has reduced energy intensity by 27 percent and CO2 emissions by 33 percent per ton of steel shipped since 1990. In fact, the steel industry is the only significant industry in the U.S. that reduced its total energy consumption while increasing its production from 1990 to 2008.

Steel is at the core of the green economy, in which economic growth and environmental responsibility work hand in hand. For example,

✦ Steel is the main material used in delivering renewable energy—solar, tidal and wind.
✦ The domestic steel sector is recognized as having the steepest decline of total air emissions among nine manufacturing sectors studied in the EPA’s Sector Performance Report.
✦ Steel is the only material that reduces greenhouse gas emissions in all phases of an automobile’s life: manufacturing, driving and end-of-life.
✦ Today, 97% of steel by-products can be re-used and the recycling rate for steel itself is 92%, far surpassing other materials.
✦ The use of advanced high-strength steel in vehicles means that less steel is required to do the same job in future vehicles, thereby preserving the planet’s natural resources for the future.
✦ Codes and standards for steel construction enable designers and builders to utilize more cost-effective and efficient practices which ultimately improves their bottom line.
✦ The manufacture of steel and steel products provides for a large number of good-paying jobs in the entire supply chain, thereby improving the quality of life for many.

Sources: AISI and worldsteel association
Recycling

The overall recycling rate of steel has reached an all-time high of 92 percent based on the most recent data compiled by the Steel Recycling Institute (SRI) through 2011. More than 85 million tons of domestic steel scrap was consumed by steelmaking furnaces in 2011, nearly 10 million tons more than in 2010. All steel is 100 percent recyclable and more steel is recycled each year than aluminum, copper, paper, glass and plastic combined.

Steel is the engine that drives the recycling of many consumer goods, as evidenced by the following recycling rates: automobiles (94.5%) appliances (90%), steel containers (70.8 %), structural steel (98%), and construction reinforcement steel (70%). Recycling rates for autos are often near or over 100%, as older vehicles being recycled are often heavier than new cars, which are lighter and more fuel-efficient through the use of advanced high-strength steels.

As a result of the steel industry’s commitment to sustainability, we are aggressively seeking ways to reduce our environmental footprint even while producing the advanced and highly recyclable steel that our economy needs. In fact, the American steel sector has been recognized as having the steepest decline of total air emissions among nine manufacturing sectors studied in the U.S. Environmental Protection Agency’s (EPA) 2008 Sector Performance Report. A helpful tool the industry is using as part of this process is the Life Cycle Analysis (LCA) approach, which is essential to measuring the real environmental impact of a material. Among other things, LCA considers the total environmental impacts generated by the production, as well as use and end-of-life (recycling or disposal) phases of a product. Steel has life cycle advantages over competing materials because of its relatively low energy use, high recyclability, conservation of natural resources, and the extensive re-use of by-products.
Global Leader in Labor Productivity

The steel industry directly employs 161,900 people in the United States, and it directly or indirectly supports more than one million U.S. jobs. Labor productivity has seen a five-fold increase since the early 1980s, going from an average of 10.1 man-hours per finished ton to an average of 2.1 man-hours per finished ton of steel in 2011. Many North American plants are producing a ton of finished steel in less than one man-hour. These achievements are only possible through a highly-skilled workforce. In that regard, member companies of the American Iron and Steel Institute are committed to continuous improvement in safety and health and to achieving an injury-free workplace.

The U.S. steel industry is in the top tier of labor productivity worldwide at an average of 2.1 man-hours per ton of steel produced, with many facilities producing a ton of steel in less than one man-hour.

Despite such strong performance by the steel industry and its workforce, American steelmakers’ ability to compete globally is being threatened by nations unwilling to abide by international trade rules set by the World Trade Organization and by American trade laws. Nations that habitually circumvent and evade U.S. antidumping and countervailing duty laws in order to send unfairly traded imports into our market must face consequences. To counter such foreign unfair trade practices, the United States must establish and enforce trade policies that will truly level the international playing field for all manufacturers, including keeping our trade laws strong and strictly enforcing them.
China’s currency undervaluation by as much as 25 to 30 percent is an example of trade-distorting practices which harm the economies of the United States and of our trading partners by keeping China’s export prices artificially low.

American manufacturers, including U.S. steelmakers, can compete with anyone in the world, but we cannot compete with governments. That is why AISI is urging our government leaders to embrace and put in place a national manufacturing strategy. Such an approach can restore our manufacturing sector and create millions of new jobs through a comprehensive program to rebuild our infrastructure, achieve energy independence—which will also significantly reduce our trade deficit—and enforce our trade laws. It must also remove artificial barriers built by our trading partners and ensure that domestic policies promote U.S. industrial competitiveness.
The North American steel industry consists of healthy, world-class companies that are internationally competitive.

Steel’s Presence Throughout America

Steel has long been considered the backbone of the American manufacturing sector, providing an essential material for downstream manufacturers in the automotive, energy, machinery and equipment, container, appliance and rail industries. Steel is a critical building material for the nation’s energy, transportation and water infrastructure; and to commercial and residential construction.

In addition, steel products are a critical component in virtually every military platform and are essential to our national defense.

As we enter the second decade of the 21st century, the steel sector is recovering from the worst global recession since World War II. Prior to the global recession, the steel industry enjoyed five consecutive years of robust demand and strong performance. The North American steel industry consists of healthy, world-class companies that are internationally competitive.

In 2013, the steel sector expects to see gradual progress in comparison to 2012, with the market experiencing improvement in steel demand. Following is a summary of selected 2012 statistics for the American steel sector:

<table>
<thead>
<tr>
<th>2012 U.S. Steel Industry Statistical Highlights</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel shipments</td>
</tr>
<tr>
<td>Imports (finished)</td>
</tr>
<tr>
<td>Exports</td>
</tr>
<tr>
<td>Apparent steel demand</td>
</tr>
<tr>
<td>Direct employment</td>
</tr>
<tr>
<td>Direct & indirect jobs supported</td>
</tr>
</tbody>
</table>

Note: all data are estimates based on latest available data

Source: American Iron and Steel Institute

2012 Steel Shipments* by Market Classification

- Automotive: 25%
- Construction: 40%
- National Defense and Homeland Security: 3%
- Energy: 8%
- Container: 4%
- Appliances: 4%
- Other: 4%
- Machinery and Equipment: 12%

*Estimated percentages.
Automotive

The North American steel industry’s continual investment in advanced technologies has led to the introduction of a wide variety of new automotive steels. These new steel grades are growing faster in new automobiles than aluminum and plastics, steel’s main competitors. Each year new car models are introduced using lighter-weight yet higher-strength steel components that provide a cost-effective answer to the demand for increased safety and fuel economy in automobiles and light trucks.

The total steel in the average 2010 vehicle is approximately 60 percent. A substantial portion of the steel in modern body structures, about 17 percent, is made up of these new, advanced high-strength steels (AHSS). According to automotive studies¹, these grades have grown in use by 93% in 2010 and are projected to grow by over 300 percent by 2020 from a level of 81 pounds per vehicle in 2006. These modern steels provide a superior combination of high strength, crash energy management, excellent formability and dent resistance enabling automotive engineers to reach new targets of safety, performance and cost efficiency. These new steel technologies are showcased each year at AISI’s Steel Market Development Institute’s Great Designs in Steel seminar, which has become the leading go-to forum for the latest trends in automotive steel designs.

Substantial mass savings of over 25 percent have been achieved with these grades in body and component systems over the last decade. Recent projects including FutureSteelVehicle (a WorldAutoSteel study released in May 2011) show that the latest AHSS grades combined with innovative steel processing methods and design optimization techniques enable steel to achieve 35 percent mass reduction in many applications, virtually equivalent to past mass reduction levels achieved by aluminum. Mass reduction with AHSS not only conserves material but helps reduce greenhouse gas emissions over the full life cycle of the vehicle. If, for example, currently available AHSS were applied throughout the present U.S. automotive fleet, greenhouse gas emissions from automobiles would be reduced by approximately 12 percent—an amount greater than the emissions generated by the entire American steel industry today. This reduction in emissions is, in fact, already underway as automotive designers around the world use increasing amounts of AHSS in their vehicles.

¹ Ducker Worldwide, 2009
Construction

The National Institute of Standards and Technology notes that “steel has become one of the most reliable, most used and most important materials of the age.” As an advanced engineered material, steel is the material of choice by engineers and architects because of its strong performance characteristics, its reliability, its versatility in design and consistency as a product, and its decidedly “green” profile.

Residential and Commercial Construction

For example, the average steel-framed house can be made from four recycled cars, while it takes more than 40 trees to build a wood-framed home. Under the U.S. Green Building Council Leadership in Environmental and Energy Design (LEED®) green building rating system, steel is always a net contributor to the two available points provided for recycled content under Materials & Resources Credit 4: Recycled Content. Both commercial and residential steel buildings and steel roofs offer energy efficiency, longer life expectancy, low life-cycle costs and greater durability.
Bridges

Bridges connect us as a nation. We need them to transport billions of tons in freight each year from coast to coast.

Yet the Federal Highway Administration (FHWA) estimates that over 25 percent of America’s nearly 600,000 bridges are either structurally deficient or functionally obsolete. Repairing and/or replacing these bridges with modern steel bridge designs must be a national priority. Steel bridges offer owners practical design and accelerated bridge construction solutions that are durable, cost-effective, and offer ease of maintenance and construction. In fact, high-performance steels can save up to 18 percent of a bridge project’s cost. And new permanent modular steel bridges are now available, which can be constructed in a single weekend. To upgrade our crumbling infrastructure, the Federal Highway Administration estimates that a 20-year investment of $131.7 billion is needed for bridges and highways alone. The American Society of Civil Engineers’ (ASCE) economic report on surface transportation (July 2011) found that deteriorating infrastructure will cost the American economy more than 876,000 jobs and suppress the growth of our GDP by $897 billion by the year 2020. The ASCE 2009 Report Card for America’s Infrastructure graded the nation’s critical infrastructure systems with a “D” and noted a five-year investment need of $2.2 trillion.

Today, America’s bridges are utilizing bridge technologies that help save taxpayer dollars as we rebuild our infrastructure over the next two decades. In addition, designers and engineers can specify new high-performance steels (HPS), developed by member companies of AISI with the Office of Naval Research and the Federal Highway Administration. These steels have superior toughness and can be welded with little or no preheat. Today, there are more than 400 HPS bridges in use in 45 states.
Steel offers cost-competitive solutions. Roadways that use continuously reinforced concrete pavement (CRCP—reinforced with steel) have been shown to improve fuel efficiency in heavy vehicles by as much as 20 percent. CRCP means increased environmental benefits because it is made of 100 percent recycled material, and it reduces thermal heat in cities and traffic delays for motorists because of fewer road repairs and reconstruction.

Transportation/Infrastructure

In a globalized economy, America’s infrastructure is important to our competitive edge considering the overall cost of congestion. The Texas Transportation Institute estimated that in 2010, congestion in 439 metropolitan areas caused urban Americans to travel 4.8 billion hours more and to purchase an extra 1.9 billion gallons of fuel for a congestion cost of $101 billion. It’s also important to employment. According to the American Road and Transportation Builders Association, the U.S. transportation design and construction industry generates more than $380 billion in economic activity annually and sustains 3.4 million American jobs—nearly three percent of the nation’s Gross Domestic Product (GDP). The Department of Transportation reports that every $1 billion federally invested in highway capital supports nearly 37,500 American jobs.

Other steel-intensive infrastructure includes pipe for waterways, oil and natural gas exploration and distribution, rail, and culverts and water tanks, to name a few examples. The energy sector is expected to be a strong source of steel demand over the next 10 years, particularly as the nation’s energy infrastructure is further developed. Electric companies alone will need to spend an estimated $880 billion to strengthen our nation’s electric distribution and transmission systems from 2010 to 2030 in order to maintain a reliable supply of electricity.

Electric Utility Distribution Poles

Steel’s profile as a green material has led to growing interest in replacing aging wood electric utility distribution poles with poles made of steel. Steel utility distribution poles have a number of clear advantages over competing materials (treated wood and concrete). These include ease of installation, reliability, durability, life cycle cost and environmental considerations. There are approximately 185 million utility distribution poles in North America. An estimated 2.5 million wood poles are replaced annually.

Since 1998, close to one million steel distribution poles have been installed, and are now being used by over 600 of 3,100 U.S. electric utilities.
Container

Steel cans are the most recycled food and beverage package in the world, giving steel an important role in providing America with sustainable packaging for foods essential to a healthy diet.

In fact, recent research shows that canned foods often provide needed nutrients at a lower cost than fresh, frozen and dried forms, particularly when price, waste and time to prepare are considered. Canned foods provide access to nutritious foods suitable for any lifestyle, regardless of budget, schedule, cooking skills and preparation preference. Given the benefits canned foods offer including nutrition, convenience, value, versatility, year-round availability, economic impact and sustainability, AISI’s Canned Food Alliance (CFA) works with Congressional offices and the U.S. Department of Agriculture (USDA) to ensure that canned foods play a role in federal food and nutrition programs. The USDA includes canned foods in the 2010 Dietary Guidelines for Americans and supports the inclusion of canned food in its Supplemental Nutrition Program for Women, Infants and Children (WIC). As the government and nutrition professionals strive to increase Americans’ consumption of fruits and vegetables and key nutrients such as fiber and protein, canned foods provide year-round access to nutritious, affordable and convenient options.

Named a National Strategic Partner by the USDA in September 2011, CFA supports the USDA’s Center for Nutrition Policy and Promotion mission to help educate Americans about the new 2010 Dietary Guidelines for Americans and the MyPlate food icon.

The CFA is also a member of the Produce For Better Health Foundation (PBH), the American Fruit and Vegetable Processors and Growers Coalition, the Society for Nutrition Education and Behavior (SNEB) and the National Fruit and Vegetable Alliance (NFVA), which includes the Center for Disease Control, U.S. Department of Agriculture, PBH, National Cancer Institute, American Cancer Society, state health departments and other respected organizations. For more information, visit www.mealtime.org.
National Security

It is vital to U.S. national economic security and to our homeland security that America does not become dangerously dependent on offshore sources of supply. Steel is a strategic material—and its importance to the military must also be looked at in a broader context to include all of the steel that goes into the rails, rail cars, ground vehicles, tanks, ships, military barracks, fences and bases, at home and overseas. Steel is needed to harden existing U.S. infrastructure and installations so that a strong, domestic industry can provide immediate steel deliveries when and where required. Here are some examples of applications for domestic steel vital to America’s infrastructure:

✦ **Energy infrastructure** such as petroleum refineries, oil and gas pipelines, storage tanks, electricity power generating plants, electric power transmission towers and utility distribution poles;

✦ **Transportation infrastructure** such as highways, bridges, railroads, mass transit systems, airports, seaports and navigation systems;

✦ **Health and public safety infrastructure** such as dams and reservoirs, waste and sewage treatment facilities, the public water supply system and, increasingly, residential construction;

✦ **Commercial, industrial and institutional complexes** such as manufacturing plants, schools, commercial buildings, chemical processing plants, hospitals, retail stores, hotels, houses of worship and government buildings.

The USS New York, pictured here, contains 24 tons of steel reclaimed and recycled from the World Trade Center.

Photo by Josh Haner/The New York Times/Redux
Military uses for steel are extensive. Thousands of skilled men and women of the American steel industry work to produce high-quality, cost-competitive products that are used by the military in various applications ranging from aircraft carriers and nuclear submarines to Patriot and Stinger missiles, armor plate for tanks and field artillery pieces, as well as every major military aircraft in production today. Some examples of steel use in defense applications are:

- The USS New York was built with 24 tons of steel reclaimed and recycled from the World Trade Center.
- The USS George H.W. Bush, an aircraft carrier named after the 41st President, contains 47,000 tons of structural steel and serves as home to 6,000 Navy personnel.
- Steel is a strategic material needed to strengthen existing U.S. infrastructure and installations.

All segments of the domestic steel industry contribute directly or indirectly to the defense industrial base. Whether it is missiles, jet aircraft, submarines, helicopters, Humvees® or munitions, American-made steels and specialty metals are crucial components of U.S. military strength. Steel plate is used in the bodies and propulsion systems of the naval fleet. The control cables on virtually all military aircraft, including fighter jets and military transport planes, are produced from steel wire rope. In addition, land-based vehicles such as the Bradley Fighting Vehicle, Abrams Tank and mine-resistant ambush-protected (MRAP) vehicles use significant amounts of steel.
AISI has long identified commitment to sustainability as part of our industry’s strategic plan. In line with that vision, the American steel industry is currently conducting research on the next generation of iron and steelmaking technologies that will dramatically reduce or deliver the breakthroughs needed to significantly reduce energy use and emissions.

Breakthrough Technologies

Over the last two decades, the American steel industry has achieved advances in automation and energy management that have highly optimized the U.S. steelmaking process. Efforts are constantly being made to achieve incremental improvements, but in order to make major reductions in future energy use, entirely new “breakthrough” processes are needed.

The steel industry is conducting research on the next generation of iron and steel making technologies that will dramatically reduce or eliminate CO₂ emissions. Historically, it has taken two to three decades for new technologies to be fully developed and tested for commercial market and widespread adoption, so it will take time to achieve further progress.

A project at the University of Utah is developing a Novel Flash Ironmaking process based on the direct gaseous reduction of fine iron oxide concentrates in a flash reduction process with the objective of significantly increasing energy productivity and greatly reducing environmental emissions, especially CO₂ emissions. This transformational process takes advantage of shale gas discoveries in the U.S. and the productive use of the availability of large quantities of very fine iron oxide concentrates.

This particular research builds on three years of laboratory testing successfully performed and completed in 2011 under AISI’s CO₂ Breakthrough Program at the University of Utah on a smaller-scale oxy-fuel burner as a promising device for heat supply in an industrial operation. Before an industrially viable process can be developed, extensive larger-scale bench and pilot-scale tests must be carried out to identify technical and scale-up hurdles.

Next steps on the project involve laboratory tests, mathematical process simulations, and design development work to support installation/commissioning of a new larger-scale reactor (shown above). Once fully commissioned, a comprehensive testing program will be conducted by the University of Utah to identify technical and scale-up hurdles in order to generate information on optimum operating temperature, gas velocity, reactor dimensions, and refractory type needed to develop the design and construction of an industrial pilot-plant.
Paired Straight Hearth Furnace

AISI members are also developing the Paired Straight Hearth Furnace, a high-productivity, low-energy ironmaking unit that can process steel plant wastes, as well as virgin iron materials. The basis for the development of this new ironmaking process is that it operates at higher production rates and lower energy utilization than conventional rotary hearth processes. The key is the tall bed design (120mm), which protects the bed from reoxidization and allows more complete combustion.

Laboratory-scale tests are in progress to determine the most appropriate furnace discharge method, calculate the level of furnace emissions, and finalize the cost estimate for construction of a 50,000 tpy demonstration furnace. Using coal instead of coke, this new innovative ironmaking process is anticipated to be available for commercial demonstration within the next five years.

These breakthrough research and development projects could fundamentally change the way steel is produced. They also clearly demonstrate the U.S. steel industry’s commitment to a sustainable future.
The American Iron and Steel Institute (AISI)

Founded in 1855 as the American Iron Association, today’s American Iron and Steel Institute history spans more than 150 years. Headquartered in Washington, D.C., AISI advocates on behalf of its member companies for public policies that support a globally-competitive American steel industry. Never has it been more critical than it is today for the American steel industry to speak out loud and clear and with a unified voice on major policy issues that are impacting American manufacturers.

The American Iron and Steel Institute’s mission is to influence public policy, educate and shape public opinion in support of a strong, sustainable U.S. and North American steel industry committed to manufacturing products that meet society’s needs.

To achieve its mission, AISI:

✦ **FOCUSES ON THE ADVOCACY** of public policy issues central to the steel industry, issues where AISI can make an impact and issues where there is strong member alignment.

✦ **INFORMS AND EDUCATES** opinion leaders about the North American steel industry’s strategic importance to national and economic security.

✦ **COMMUNICATES THE BENEFITS** that the industry’s technological advances are making to the health and safety of its workforce and to the environment.

✦ **COLLECTS AND PROVIDES INDUSTRY DATA** to policymakers, company personnel and the public regarding steel operations, production, energy efficiency, shipments, import/export levels and consumption.

✦ **PURSUES TECHNOLOGY ADVANCEMENTS** through Collaborative Research and Development.

✦ **ASSISTS MEMBER COMPANIES** in attracting and retaining talent.

✦ **ADVANCES THE COMPETITIVE USE** of steel in traditional and growth markets.
The Steel Market Development Institute (SMDI)

The Steel Market Development Institute (SMDI), a business unit of AISI, grows and maintains the use of steel through strategies that promote cost-effective solutions in the automotive, construction and container markets, as well as for new-growth opportunities in emerging steel markets. The Steel Market Development Institute investor companies are: AK Steel Corporation, ArcelorMittal Dofasco, ArcelorMittal USA LLC, EVRAZ North America, Gerdau*, Nucor Corporation, Severstal North America Inc., SSAB Americas, Thyssenkrupp Steel USA LLC, United States Steel Corporation and USS-POSCO Industries.

In partnership with these investor steel companies, the Steel Market Development Institute:

✦ **WORKS WITH AUTOMOTIVE ENGINEERS** to develop and promote lightweight future vehicle designs and the next generation of steel technologies;

✦ **CONDUCTS RESEARCH, TECHNOLOGY TRANSFER AND MARKETING**, and provides sustainable steel-based solutions to challenges faced in the commercial and residential construction sectors, transportation and infrastructure sectors, and energy sectors through its Construction Market program. This includes the development and maintenance of building codes and standards;

✦ **INTERFACES WITH LEGISLATORS** at the federal and state levels to inform them about the importance of including nutritional canned food in national programs for schoolchildren; and

✦ **STRATEGIZES WITH ALL STAKEHOLDERS**—from customers to political leaders—in all markets to determine how to provide steel-based solutions to their critical marketplace challenges.

*Includes Gerdau Long Steel North America and Gerdau Special Steel North America

The Steel Recycling Institute (SRI)

The Steel Recycling Institute (SRI) is an industry association dedicated to communicating the accomplishments of the North American steel industry in recycling, sustainability, and life cycle assessment. SRI assists the solid waste industry, government, business, and consumers with steel recycling locations and other practical information.
AISI Producer Members and their Locations in North America

A. FINKL & SONS CO.

North American Locations
Headquarters: Chicago, IL

UNITED STATES
California
Southgate
Michigan
Warren
Minnesota
Minneapolis
Ohio
Tallmadge
A. Finkl & Sons Co. has additional locations in Canada and Mexico

North American Production: Processes over 100,000 tons

AK STEEL CORPORATION

North American Locations
Headquarters: West Chester, OH

UNITED STATES
Indiana
Columbus: Tubular steel
Rockport: Continuous carbon/stainless pickling line, continuous carbon/stainless cold mill, stainless continuous annealing/pickling line, hydrogen annealing, temper mill, off-line coil inspection and continuous hot-dip galvanizing/galvannealing line
Kentucky
Ashland: Galvanized strip, galvannealed strip
Minnesota
Grand Rapids: Magnetation LLC (a joint venture of which AK Steel owns 49.9%)—iron ore concentrate from previously mined ore reserves
Ohio
Coshocton: Stainless steels in cold rolled strip, sheet coils
Mansfield: Flat rolled carbon, silicon, ferritic stainless

Middletown: Enameling iron, electro galvanized, hot-dip galvanized, hot-dip aluminized, hot-dip aluminized stainless
Walbridge: Tubular steel
Zanesville: Oriented and non-oriented, electrical steel, stainless flat rolled

Pennsylvania
Butler: Hot rolled, cold rolled, stainless, oriented and non-oriented electrical flat-rolled
Somerset County: AK Coal Resources, Inc. (a wholly-owned subsidiary of AK Steel)—metallurgical coal reserves

North American Production: 6 million tons

ALTOS HORNOS DE MÉXICO, S.A.B. DE C.V.

North American Locations
Headquarters: Av. Juarez S/No., Col. La Loma, Monclova, Coahuila, México

MEXICO
Coahuila
Monclova facility: Plate; hot rolled coil, cold rolled coil, tin, tin free steel, structural shapes, service center

Distrito Federal
Mexico City: Sales office

Estado de México
Atizapán de Zaragoza: Service center

Jalisco
Zapopan: Service center and sales office

Nuevo León
Monterrey: Nacional de Aceros, S.A. de C.V. (NASA): Light weight wall tubes, sales office

San Luis Potosí
San Luis Potosi: Sales office

UNITED STATES
Texas
San Antonio: Sales office

North American Production: 4.1 million tons
ARCELORMITTAL NORTH AMERICA

North American Locations
Headquarters: Chicago, IL

UNITED STATES
Arkansas
Pine Bluff: Long

Illinois
Riverdale: Flat

Indiana
Burns Harbor: Flat and plate
East Chicago: Indiana Harbor (East and West): Flat, long and global research and development center
Gary: Plate

New Carlisle: I/N Tek and I/N Kote: Flat (JV with Nippon Steel & Sumitomo Metal Corporation)

Kentucky
Ghent (Gallatin): Flat (JV with Gerdau)

Louisiana
LaPlace: Long products

Minnesota
Virginia: Minorca Mine
Hibbing Taconite: Mine (JV with U.S. Steel and Cliffs Natural Resources)

Mississippi
Jackson: Double G Coatings: Flat (JV with U.S. Steel)

North Carolina
Piedmont (Newton): Plate

Ohio
Cleveland: Flat
Columbus: Flat
Marion: Tube
Obertz: Flat
Shelby: Tube
Warren: Coke

Pennsylvania
Coatesville: Plate
Conshohocken: Plate

Monessen: Coke (idled)
Steelton: Long

South Carolina
Georgetown: Long

Texas
Vinton: Long

West Virginia
Princeton: Mine
Weirton: Flat

CANADA
Ontario
Brampton: Tube
Hamilton (Dofasco): Flat, long, tube and global research and development center
London: Tube
Windsor: Flat
Woodstock: Tube

Quebec
Fire Lake: Mine
Montreal (Contrecoeur East): Long
Montreal (Contrecoeur West): Long
Montreal (Longueuil): Long
Mont-Wright: Mine
Port-Cartier: Pellet plant and port
St. Patrick: Long

MEXICO
Guanajuato
Celaya: Long

Michoacan
Las Trunchas: Mines
Lazaro Cardenas: Flat and long

Nuevo León
Monterrey: Tube

Sonora
Sonora–Ciudad Obregón: Mine
Sonora–Guaymas: Mine

North American Production: approximately 24 million tons
BERG STEEL PIPE CORP
North American Locations
Headquarters: Panama City, FL
UNITED STATES
Alabama
Mobile: Spiral pipe
Florida
Panama City: Steel pipe 24 through 64-in. OD; wall thickness 0.250 through 1.5 inches
Texas
Houston: Sales office
North American Production: 550,000 tons

CALIFORNIA STEEL INDUSTRIES
North American Locations
Headquarters: Fontana, CA
UNITED STATES
California
Fontana: Converts purchased steel slab into hot rolled, pickled and oiled, galvanized, and cold rolled sheet; electrical resistance welded pipe
North American Production: 2 million tons

CLIFFS NATURAL RESOURCES
North American Locations
Headquarters: Cleveland, OH
UNITED STATES
North American Iron Ore
Michigan
Ishpeming: Tilden Mine
Palmer: Empire Mine
Minnesota
Babbitt: Northshore Mining Company (mine)
Duluth: Shared services
Eveleth: United Taconite (mine)
Forbes: United Taconite (processing facility)

Hibbing: Hibbing Taconite
Silver Bay: Northshore Mining Company (processing facility)
North American Coal
Alabama
Adger: Oak Grove Mine
Hueytown: Concord Preparation Plant
West Virginia
Man: Cliffs Logan County Coal
Pineville: Pinnacle Complex
CANADA
Quebec
Fermont: Bloom Lake (mine)
Montreal: Cliffs Quebec Iron Mining Limited
Ontario
Thunder Bay: Cliffs Chromite Far North Inc.
Toronto: Cliffs Chromite Far North Inc.
Cliffs Natural Resources is organized through a global commercial group responsible for sales and delivery of Cliffs products and a global operations group responsible for the production of the minerals the Company markets. Cliffs operates iron ore and coal mines in North America and two iron ore mining complexes in Western Australia. In addition, Cliffs has a major chromite project, in the feasibility stage of development, located in Ontario, Canada.
U.S. Iron Ore Production: 22 million long tons
Eastern Canadian Iron Ore Production: 8.9 million metric tons
North American Coal Production: 6.2 million short tons

COMPANIA SIDERURGICA HUACHIPATO
North American Locations
Headquarters: Chile
CHILE
Concepcion (Bio-Bio Region)
Talcahuano: Coke production, steelmaking, reinforcing round, wire rod, grinding bars, hot rolled, cold rolled and galvalume
DEACERO, S.A. DE C.V.

North American Locations
Headquarters: San Pedro Garza Garcia, Nuevo León–Mexico

MEXICO
Baja California
Mexicali: Wire products, scrap recollection center
Tijuana: Distribution Center, scrap recollection center

Coahuila
Ramos Arizpe/Saltillo: Steelmaking, billet, wire rod, rebar, merchant bars, small profiles, wire products

Distrito Federal
Delegacion Gustavo A. Madero: Scrap recollection center

Estado de Mexico
Tlalneplanta: Wire products, scrap recollection center, sales office
Tultitlan: Scrap recollection center, distribution center

Guanajuato
Irapuato: Distribution center
León: Wire products
Villagran/Celaya: Steelmaking, billet, wire rod, rebar, merchant bars, wire products

Jalisco
El Salto: Sales office
Guadalajara: Scrap recollection center, distribution center

Michoacan
Morelia: Wire products

Nuevo León
Apodaca: Distribution center
Guadalupe: Wire products, scrap recollection center
San Nicolas de los Garza: Scrap recollection center
San Pedro Garza Garcia: Main office
Santa Catarina: Wire products

Puebla
Puebla: Wire products, scrap recollection center, sales office, distribution center

Queretaro
Queretaro: Wire products

San Luis Potosi
San Luis Potosi: Distribution center, scrap recollection center

Sinaloa
Culiacan: Distribution center

Sonora
Hermosillo: Scrap recollection center

Tabasco
Villa Hermosa: Distribution center

Tamaulipas
Matamoros: Scrap recollection center

Veracruz
Veracruz: Distribution center

UNITED STATES
Indiana
Indianapolis: Distribution center

Missouri
Poplar Bluff: Wire products

Texas
Houston: Deacero USA, Inc. (wire products and sales office)
Laredo: Distribution center
New Braunfels: Stay Tuff Fence Manufacturing, Inc. (wire products)

North American Production: 3.5 million tons

DTE ENERGY SERVICES

North American Locations
Headquarters: Ann Arbor, MI

UNITED STATES
Indiana
Burns Harbor

Maryland
Baltimore

Michigan
River Rouge

Pennsylvania
Pittsburgh

North American Production: Among the many energy operations of DTE are steel mill coke and coal operations and other steel industry fuel-related projects.
EVRAZ NORTH AMERICA
North American Locations
Headquarters: Chicago, IL

UNITED STATES
Colorado
Pueblo: Steelmaking, head hardened and standard rail, seamless OCTG casing blanks (carbon and alloy), wire rod, coiled reinforcing bar, Product Technology Center

Delaware
Claymont: Steelmaking, plate and custom burned plate

Oregon
Portland: Plate, heat-treated plate, coil, large diameter spiral line pipe, structural tubing and hollow structural steel (HSS)

CANADA
Saskatchewan
Regina: Steelmaking, plate and coil, ERW OCTG casing and tubing blanks, small and large diameter line pipe (ERW and Spiral), research and development

Alberta
Calgary: ERW pipe, OCTG casing and tubing with upsetting and heat treating capabilities

Camrose: Large diameter DSAW line pipe, ERW OCTG casing blanks

Red Deer: ERW OCTG casing and small diameter line pipe, API and premium threading capabilities

British Columbia
Surrey: Cut-to-length plate and sheet, coils

North American Production: 5 million tons

GERDAU LONG STEEL NORTH AMERICA
North American Locations
Headquarters: Tampa, FL

UNITED STATES
Alabama
Birmingham: Rebar fabrication

Arkansas
Little Rock: Rebar fabrication

Paragould: Rail spikes, rebar fabrication

California
Rancho Cucamonga Steel Mill: Rebar

Florida
Fort Lauderdale: Rebar fabrication

Jacksonville Steel Mill: Billets, rebar, rebar coil, wire rod

Jacksonville: Rebar fabrication

Tampa: Rebar fabrication, technical resource center

Georgia
Albany: Rebar fabrication

Atlanta: Rebar fabrication

Cartersville Steel Mill: Billets, angles, unequal angles, flats, channels, MC channels, WF beams, S beams

Cartersville: Rebar fabrication

Savannah: Rebar fabrication

Illinois
Belvidere: Rebar fabrication

Decatur: Rebar fabrication

Joliet Steel Mill: Flats, squares

Sterling: Rebar fabrication

Urbana: Rebar fabrication

Indiana
Muncie: Rebar fabrication

Iowa
Eldridge: Rebar fabrication

Wilton Steel Mill: Billets, squares, angles, unequal angles, flats, rebar

Kentucky
Calvert City Steel Mill: Angles, unequal angles, flats, channels, MC channels

Louisville: Rebar fabrication

Louisiana
New Orleans Express Shop: Rebar fabrication

Minnesota
Duluth: Grinding balls

St. Paul Steel Mill: Billets, carbon and alloy rounds, rebar
Missouri
Independence: Rebar fabrication
Kansas City: Rebar fabrication
St. Louis: Rebar fabrication

New Jersey
Perth Amboy: Rebar fabrication
Sayreville Steel Mill: Rebar, rebar fabrication

North Carolina
Charlotte Steel Mill: Billets, rounds, angles, unequal angles, flats, channels, rebar, rebar fabrication
Raleigh: Rebar fabrication

Ohio
Cincinnati: Rebar fabrication
Orrville: Bright bar, cold drawn steel

Oklahoma
Muskegee: Rebar fabrication
Oklahoma City: Rebar fabrication
Sand Springs: Rail spikes, rebar, rounds, flats, studded “T” fence post

Pennsylvania
York: Rebar fabrication

South Carolina
Lancaster: Rail spikes

Tennessee
Arlington: Rebar fabrication
Jackson Steel Mill: Billets, squares, angles, unequal angles, flats, channels, rebar
Johnson City: Rebar fabrication
Knoxville Steel Mill: Billets, rebar, rebar fabrication, plain round
Knoxville: Rebar fabrication
Memphis: Rebar fabrication
Nashville: Rebar fabrication

Texas
Beaumont Steel Mill: Billets, rebar coil, wire rod
Beaumont: Rebar fabrication
Carrollton: Wire rod
Dallas: Rebar fabrication

Houston: Rebar fabrication
Midlothian Steel Mill: Billets, Bantam® beams, S beams, WF beams, rebar, rounds, squares, channels, H piling, sheet piling

Virginia
King George: Rebar fabrication
Petersburg Steel Mill: WF beams, H piling, sheet piling

Wisconsin
Appleton: Rebar fabrication
Madison: Rebar fabrication

CANADA
Ontario
Cambridge: Rebar, rounds, flats, angles, channels, squares, billets
Oshawa: Raw materials recycling
Whitby: Angles, rebar, flats, channels, beams, billets

Manitoba
Selkirk: Special sections, SBQ, merchant, rebar, light and medium structural angles, channels

North American Production: 12 million tons

GERDAU SPECIAL STEEL NORTH AMERICA
North American Locations
Headquarters: Jackson, MI

UNITED STATES
Arkansas
Fort Smith Mill: Producer–engineered special bar quality carbon, alloy and bearing steel bars (hot and cold finish)

Indiana
Huntington Facility: Heat treating, quench and temper
North Vernon Facility: Heat treating, cleaning and coating

Michigan
Jackson Mill: Producer–engineered special bar quality carbon, alloy and bearing steel bars (hot and cold finish)
Lansing Bassett Facility: Heat treating, cleaning and coating
Lansing Mt Hope Facility: Heat treating, cleaning and coating
Monroe Mill: Producer–engineered special bar quality carbon, alloy and bearing steel bars (hot and cold finish)
Ohio
Canton Facility: Heat treating, cleaning and coating
Wisconsin
Pleasant Prairie Facility: Nitride steel bars
North American Production: 1.4 million tons

HARSCO METALS & MINERALS
North American Locations
Headquarters: Haresco Metals and Minerals, Camp Hill, PA
Harsco Metals America, Cranberry Township, PA
Harsco Minerals, Mechanicsburg, PA

UNITED STATES
Alabama
Birmingham
Gadsden
Arkansas
Blytheville
Colorado
Pueblo
Illinois
Pawnee
Pekin
Indiana
East Chicago
Gary
Highland
Pittsboro
Whiting
Iowa
Muscatine
Kansas
LaCygne
Kentucky
Ashland
Drakesboro
Ghent
Michigan
Detroit
Ecorse
Missouri
Clifton Hill
Matston
North Carolina
Cofield
Ohio
Chester
Niles
Warren
Waterford
Pennsylvania
Braddock
Butler
Fairless Hills
Koppel
Latrobe
Midland
Natrona Heights
Sarver
Steelton
West Mifflin
Tennessee
Memphis
Texas
Houston
Midlothian
Rockdale
Utah
Provo
West Virginia
Moundsville
CANADA
Ontario
Cambridge
Hamilton
Nanticoke
Whitby
Quebec
Contrecoeur
Sorel-Tracy

North American Production: Haresco provides innovative resource recovery technologies, environmental solutions and logistics services to the metals and minerals industries.

IVACO ROLLING MILLS 2004 L.P.
North American Locations
Headquarters: l’Original, Ontario, Canada
Ontario
l’Original: Hot rolled steel wire rod, billet
North American Production: 900,000 tons

NUCOR CORPORATION
North American Locations
Headquarters: Charlotte, NC

UNITED STATES
Alabama
Birmingham: Nucor Steel Birmingham (carbon steel reinforcing bar, rounds, squares)
Eufaula: American Buildings Company South Region (metal buildings systems)
Fort Payne: Vulcraft Alabama (carbon steel in joists, joist girders, composite floor joist, and floor and roof deck)
Pell City: Harris Steel–Harris Rebar (rebar)
Trinity: Nucor Steel Decatur (carbon steel sheet in hot rolled, pickled, cold rolled, galvanized, galvannealed)
Tuscaloosa: Nucor Steel Tuscaloosa (carbon and high strength alloy, hot rolled coil and cut-to-length plate for structural and pressure vessel applications)

Arizona
Kingman: Nucor Steel Kingman (carbon steel reinforcing bar, wire rod)
Phoenix: Harris Steel–Harris Rebar (rebar)
Phoenix: Verco Decking (steel floor, roof deck)
Tuscon: Harris Steel–Harris Rebar (rebar)

Arkansas
Armorel: Nucor–Yamato Steel Company (carbon steel wide-flange beams, sheet and H-piling, miscellaneous and standard channels, angles, CZ and CSC car building sections, rail ties)
Blytheville: Nucor Steel Arkansas (carbon steel sheet in hot rolled, cold rolled, pickled, floor plate, galvanized coils)

California
Antioch: Verco Decking (steel floor, roof deck)
Fontana: Verco Decking (steel floor, roof deck)
Fresno: Harris Steel–Harris Rebar (rebar)
Lakeside: Harris Steel–Harris Rebar (rebar)
Lathrop: CBC Steel Buildings (metal building systems)
Livermore: Harris Steel–Harris Rebar (rebar)
Los Angeles: Nucor Trading USA (steel trading services)
Pamona: Harris Steel–Harris Rebar (rebar)

Colorado
Commerce City: Harris Steel–Harris Rebar (rebar)

Connecticut
South Windsor: Harris Steel–Barker Street (fabricating shop, decorative concrete, building products, rebar sales)
Wallingford: Nucor Steel Connecticut (carbon steel reinforcing bar, wire rod, wire mesh fabrication, structural mesh fabrication, rolled wire, deformed wire)

Florida
Milton: Harris Steel–Nufab Rebar (rebar)
Zellwood: Harris Steel–Nufab Rebar (rebar)

Georgia
Cartersville: Skyline Steel (threaded bar)

Hawaii
Kapolei: Harris Steel–Harris Rebar (rebar)

Idaho
Meridian: Harris Steel–Harris Rebar (rebar)

Illinois
Belvidere: Harris Steel–Harris Rebar (rebar)
Bourbonnais: Harris Steel–Ambassador Steel Fabrication (rebar)
Bourbonnais: Nucor Steel Kankakee (carbon steel angles, rounds, flats and reinforcing bar)
El Paso: American Buildings Company Midwest Region (metal building systems)
Litchfield: Harris Steel–Fisher & Ludlow (bar and safety grating, expanded metals products)
Newton: Skyline Steel (rolled and welded pipe)

Indiana
Auburn: Harris Steel–Ambassador Steel Fabrication, (corporate offices)
Crawfordsville: Nucor Steel Indiana (carbon steel sheet in hot rolled, cold rolled, pickled, floor plate and galvanized coils; stainless steel in hot rolled, cold rolled, pickled coils)
Mooresville: Harris Steel–Ambassador Steel Fabrication (rebar)
St. Joe: Nucor Fastener Indiana (carbon and alloy steel standard hex head cap screws, hex flange bolts, structural bolts and nuts, finished hex nuts)
St. Joe: Vulcraft Indiana (carbon steel in joist, joist girders, composite floor joist, and floor and roof deck)

Waterloo: Nucor Building Systems Indiana (metal building systems)

Iowa
Newton: Harris Steel–Ambassador Fabrication (rebar)
Kentucky
Florence: Harris Steel–Fisher & Ludlow (bar and safety grating, expanded metals products)

Louisiana
Alexandria: Harris Steel–Nufab Rebar (rebar)
Convent: Nucor Steel Louisiana (direct reduced iron)
Slidell: Harris Steel–Nufab Rebar (rebar)

Maine
Scarborough: Harris Steel–Barker Steel (rebar, building product sales)

Massachusetts
Canton: Harris Steel–Barker Steel (fabricating shop; building products, forming sales)
Milford: Harris Steel–Barker Steel, (rebar, forming sales)
South Deerfield: Harris Steel–Barker Steel (fabricating shop, rebar sales)
Westfield: Harris Steel–Barker Steel (fabricating shop)

Michigan
Comstock Park: Harris Steel–Ambassador Steel Fabrication (rebar)
Lansing: Harris Steel–Ambassador Steel Fabrication (rebar)

Minnesota
Minneapolis: Harris Steel–Ambassador Steel Fabrication (rebar)

Mississippi
Flowood: Nucor Steel Jackson (carbon steel angles, flats, reinforcing rounds, squares)
Iuka: Skyline Steel (spiralweld pipe)
Starkville: Gulf States Manufacturing (metal buildings systems)

Missouri
Kansas City: Harris Steel–Ambassador Steel Fabrication (rebar)
St. Louis: Harris Steel–Nufab; Ambassador Steel Fabrication (rebar)
Maryville: Nucor LMP Steel Inc. (cold finished bar and wire)

Nebraska
Norfolk: Nucor Steel Nebraska (carbon and alloy steel in special bar quality, cold heating quality and bearing quality, merchant bar quality in angles, channels, flats, hexagons, rounds and squares, rod, bar, squares, hex in coil)
Norfolk: Vulcraft Nebraska (carbon steel in joists, joist girders, composite floor joists, floor and roof deck)

New Hampshire
Canaan: Harris Steel–Barker Street (fabricating shop, structural steel, rebar and building product sales)

New Jersey
Avenel: Harris Steel–Barker Street (fabricating shop, rebar, building product sales)

New Mexico
Albuquerque: Harris Steel–Harris Rebar (rebar)

New York
Albany: Harris Steel–Barker Steel (fabricating shop, rebar, product sales)
Auburn: Nucor Steel Auburn (carbon steel angles, channels, flats, reinforcing bars, rounds, squares)
Chemung: Vulcraft New York (carbon steel in joists, joist girders, composite floor joists, special profile steel trusses, floor and roof deck)
Long Island City: Harris Steel–Barker Steel (building product sales)

North Carolina
Charlotte: Harris Steel, Fisher & Ludlow (bar and safety grating; expanded metals products)
Charlotte: Nucor Corporation (corporate office)
Cofield: Nucor Steel Hertford County (carbon steel plate)

Ohio
Belpre: Skyline Steel, (CF steel sheet pile)
Marion: Harris Steel–Ambassador Steel Fabrication (rebar)
Marion: Nucor Steel Marion (carbon steel angles, flats, rebar, rounds, signposts)
Oregon
Portland: Harris Steel–Harris Rebar (rebar)

Pennsylvania
Bethlehem: Harris Steel–Harris Rebar (rebar)
Camp Hill: Skyline Steel (spiralweld pipe, threaded bar, micropile, accessories)
McKees Rocks: Harris Steel, Fisher & Ludlow (bar and safety grating; expanded metals products)
Saegertown: Harris Steel, Fisher & Ludlow (car and safety grating; expanded metals products)
Wexford: Harris Steel–Fisher & Ludlow (car, safety grating; expanded metals products)

Rhode Island
Pawtucket: Harris Steel–Barker Steel (fabricating shop; rebar, building products and forming sales)

South Carolina
Darlington: Nucor Cold Finish South Carolina (carbon leaded and alloy cold drawn steel bars)
Darlington: Nucor Steel South Carolina (carbon steel in special bar quality; merchant bar quality; and reinforcing products in the following shapes: angles, channels, flats, hexagons, reinforcing bars and rounds)
Florence: Vulcraft South Carolina (carbon steel in joists, joist girders, composite floor joists, and floor and roof deck)
Huger: Nucor Steel Berkeley (carbon steel sheet in hot rolled, cold rolled, pickled, galvanized, and galvannealed coils, carbon steel wide range beams, manufacturing housing beams, standard I beams, and miscellaneous and standard channels)
Swansea: Nucor Building Systems South Carolina (metal building systems)

Tennessee
Memphis: Nucor Steel Memphis (carbon steel in special bar quality rounds, round cornered squares)
Portland: Kirby Building Systems (metal building systems)

Texas
Dallas: Harris Steel–Harris Rebar (rebar)
Dayton: Harris Steel–Nufab Rebar (rebar)

Grapeland: Vulcraft Texas (carbon steel in joists, joist girders, composite floor joists, special profile steel trusses, floor and roof deck)
Jewett: Nucor Steel Texas (carbon steel angles, channels, flats, reinforcing bars, rounds, special sections, squares, U.M. plates)
Longview: Harris Steel, Nufab Rebar (rebar)
New Braunfels: Harris Steel–Harris Rebar (rebar)
Terrell: Nucor Building Systems, (metal building systems)

Utah
Brigham City: Nucor Building Systems (metal building systems)
Brigham City: Nucor Cold Finish Utah (cold finished SBQ bar products, cold rolled wire, welded wire mesh)
Brigham City: Nucor Wire Products Utah (carbon steel standard mesh, mine mesh, rolled wire)
Brigham City: Vulcraft Utah (carbon steel in joists, joist girders, composite floor joists, special profile steel trusses)
Plymouth: Nucor Steel Utah (carbon steel angles, channels, flats, reinforcing bars, rounds, squares)

Virginia
LaCrosse: American Buildings Company Atlantic Region (metals building system)

Washington
Auburn: Harris Steel–Harris Rebar (rebar)
Lake Stevens: Harris Steel–Harris Rebar (rebar)
Longview: Skyline Steel (rolled and welded pipe, spiralweld pipe)
Port of Tacoma: Harris Steel–Harris Rebar (rebar)
Seattle: Nucor Steel Seattle (carbon steel angles, channels, flats, reinforcing bar, rounds, squares)

Wisconsin
Menomomie: Harris Steel–Ambassador Steel Fabrication (rebar)
Oak Creek: Nucor Cold Finish Wisconsin (carbon, leaded, and alloy cold drawn steel bars)
Waukesha: Harris Steel–Ambassador Steel Fabrication (rebar)
Canada
Alberta
Calgary: Harris Rebar (rebar)
Edmonton: Fisher & Ludlow (bar and safety grating, expanded metals products)
Wetaskiwin: Fisher & Ludlow (bar and safety grating, expanded metals products)
Fort Saskatchewan: Harris Rebar (rebar)
Leduc: Harris Rebar (rebar)

British Columbia
Abbotsford: Harris Rebar (rebar)
Delta Vancouver: Harris Rebar (rebar)
Kelowna: Harris Rebar (rebar)
Nanaimo: Harris Rebar (rebar)
Prince George: Harris Rebar (rebar)
Richmond: Harris Rebar (rebar)
Surrey: Fisher & Ludlow (bar and safety grating, expanded metals products)

New Brunswick
St. John: Harris Rebar (rebar)

Newfoundland
Mount Pearl: Harris Rebar (rebar)

Nova Scotia
Dartmouth: Harris Rebar (rebar)

Ontario
Brampton: Harris Rebar, Ontario, (rebar)
Burlington: Fisher & Ludlow, (bar and safety grating, expanded metal products)
Hamilton: Harris Rebar (rebar)
Laurel, Burlington: Harris Rebar, (cold-finish steel bars, welded wire mesh, cold-drawn wire)
London: Harris Rebar (rebar)
Maidstone, Windsor: Harris Rebar (rebar)
Mississauga: Harris Rebar (rebar)
Ottawa: Harris Rebar (rebar)
Sarnia: Harris Rebar (rebar)
Scarborough: Harris Rebar (rebar)
Stoney Creek: Harris Steel Group (corporate headquarters)
Sudbury: Harris Rebar (rebar)
Thunder Bay: Harris Rebar (rebar)

Quebec
Longueuil, Montreal: Harris Rebar (rebar)
Point Aux Trembles: Fisher & Ludlow (bar and safety grating, expanded metals products)

Saskatchewan
Regina: Harris Rebar (rebar)
Saskatoon: Harris Rebar (rebar)

North American Production: 20 million tons

David J. Joseph, Co. (a Nucor Subsidiary)
David J. Joseph, Co. is a scrap subsidiary of Nucor Corporation and has numerous locations in the following states: Alabama, Arizona, Colorado, Florida, Illinois, Indiana, Kansas, Kentucky, Missouri, Nebraska, Nevada, New Mexico, North Carolina, Ohio, Pennsylvania, South Carolina, Tennessee, Texas, Utah, and Washington.

Skyline Steel (A Nucor Subsidiary)
Skyline Steel is a steel foundation subsidiary of Nucor Corporation that manufactures sheet pile systems, H-piles, pipe piles, micro piles, structural shapes, piling accessories, anchorage materials, and fabrication services. Skyline Steel has numerous locations in the following states: Alabama, California, Colorado, Connecticut, Florida, Georgia, Illinois, Louisiana, Missouri, New Jersey, Ohio, Pennsylvania, Texas, Virginia, and Washington.

Severstal North America, Inc.
North American Locations
Headquarters: Dearborn, MI

United States
Michigan
Dearborn: Slabs, hot and cold rolled sheet, electrogalvanized sheet, hot-dip galvanized sheet, galvanize sheet, galvannealed sheet
Dearborn: JV Double Steel Coating Company (electrogalvanized sheet)

Monroe: JV Spartan Steel Coating LLC (hot dip galvanized sheet)

Mississippi

Columbus: Hot rolled, cold rolled and galvanize/galvannealed coated products, including high-quality surface steels for exposed automotive applications, galvanized sheet, galvannealed sheet

Columbus: JV Mississippi Steel Processing, LLC (steel processing)

West Virginia

Follansbee: JV Mountain State Carbon, LLC (cokemaking)

North American Production: 5.5 million tons (cast steel production)

SSAB AMERICAS

North American Locations

Headquarters: Lisle, IL

UNITED STATES

Alabama

Mobile: Plate, quench and temper plate, normalized plate and coil

Iowa

Montpelier: Plate, slit coil and coil

Minnesota

Roseville: Cut-to-length sheet and plate

Texas

Houston: Cut-to-length sheet and plate

CANADA

Ontario

Scarborough: Temper leveled cut-to-length sheet and plate

North American Production: 2.5 million tons

TENARIS TAMSA

North American Locations

Headquarters: Mexico City, Mexico

MEXICO

Tenaris Tamsa

Veracruz: Seamless steel tubes, research and development center, threading facility

Tabasco

Comalcalco: Threading facilities

UNITED STATES

Arkansas

Blytheville: Maverick Tube Corporation (welded steel tubes)

California

Bakersfield: Hydril Company (threading facility)

Louisiana

Westwego: Hydril Company (threading facility)

Texas

Conroe: Maverick Tube Corporation (welded steel tubes)

Downhole Center/Houston: Tenaris Coiled Tubes, LLC (coiled tubes facility)

Houston: Texas Arai (couplings facility)

McCarty/Houston: Hydril Company (threading facility)

Subsea Center/Houston: Tenaris Coiled Tubes, LLC (coiled tubes facility)

CANADA

Ontario

Saulte Ste.: Algomatubes Inc. (seamless steel tubes)

Alberta

Calgary: Prudential Steel Ltd. (welded steel tubes)

Nisku: Hydril Canadian Company Ltd (threading facility)

North American Production: 1.1 million tons
Ternium

North American Locations

Headquarters Location: Monterrey, Mexico

Mexico
- **Coahuila**
 - Monclova: Galvanized and color coated steel
- **Nuevo León**
 - Apodaca: Rebars, rollformed
 - Ciénega de Flores: Steel buildings
 - San Nicolás: HRC, CRC, profiles and tubes, panels, galvanized and color coated coils, rollformed
- **Puebla**
 - Puebla: Rebar, wire rod

United States
- **Louisiana**
 - Shreveport: Galvanized, color coated sheets

Product Distribution Centers/Service Centers
- **Baja California**
 - Tijuana
- **Chiapas**
 - Tuxtla Gutierrez
- **Chihuahua**
 - Chihuahua
- **Distrito Federal**
 - Ciudad de México
- **Jalisco**
 - Guadalajara
- **Nuevo León**
 - Apodaca
- **Puebla**
 - Puebla
- **San Luis Potosí**
 - San Luis Potosí
- **Sinaloa**
 - Culiacán
- **Veracruz**
 - Veracruz

Yucatán
- Mérida

Mines
- Colima
- Peña Colorada (Ternium share 50%)

Michoacán
- Aquila

North American Production: 7.1 million tons

The Timken Company

North American Locations

Headquarters: Canton, OH

United States
- **Arizona**
 - Mesa: Timken Aerospace Aftermarket Solutions (products and services)
- **California**
 - Los Alamitos: Timken Bearing Inspection Inc. (aerospace)
- **Connecticut**
 - Manchester: Timken Aerospace Transmissions, LLC (gear-boxes and transmissions for military and commercial aircraft)
 - Manchester: Technology Engineering Center (aerospace)
- **Georgia**
 - Ball Ground (Canton): Green Ring Plant (small facility)
- **Illinois**
 - Fulton: Timken Drives
- **Indiana**
 - South Bend: South Bend Plant (reconditioning and remanufacturing of antifriction roller bearings)
- **New Hampshire**
 - Keene: Technology center and Timken Super Precision (health and positioning control bearing products)
 - Lebanon: Timken Aerospace (precision bearings for aerospace)
- **North Carolina**
 - Columbus (Tyron Peak): Timken STEEL Value added processing
 - Iron Station (Lincolnton): Bearing Plant (mobile and industrial)
Randleman (Asheboro): Bearing Plant (industrial and aerospace)
Rutherfordton (Shiloh): Bearing Plant (aerospace)
Ohio
Bucyrus: Bearing Plant (mobile and industrial)
Canton: Harrison STEEL (alloy steel bars)
Canton: Faircrest STEEL (alloy steel bars, billets)
Canton: Gambrinus Roller Plant (rollers for roller bearings)
Canton: Gambrinus STEEL (seamless tubing)
Canton: Sales and administrative offices, Timken Bearings & Power Transmission and STEEL
Eaton (St. Clair): STEEL (specialty steel components for vehicles)
New Philadelphia: Bearing Plant (precision aerospace and industrial)
Niles: Industrial Services Plant (life-extending surface technologies)
North Canton: Technology Engineering Center (global engineering headquarters)
Pennsylvania
King of Prussia: Timken Gears & Services, Inc.
South Carolina
Duncan: Distribution Center
Gaffney: Bearing Plant (mobile and aerospace)
Honea Path: Bearing Plant (mobile)
Union (Tyger River): Bearing Plant (ultra-large-bore tapered roller bearings for wind turbines and large machinery)
Union (Tyger River): Industrial Service Center
Tennessee
Mascot (Knoxville): Sales office and Rail Bearing Services Facility
Pulaski: Bearing Plant (industrial bearings, housed units and components)
Texas
Houston: Timken Boring Specialties, LLC (STEEL) Value added processes
Virginia
Altavista: Bearing plant
Washington
Ferndale: Bearing plant
North American Production: 1.2 million tons

THYSSENKRUPP STEEL USA, LLC
North American Locations
Headquarters: Calvert, AL
United States
Alabama
Calvert
Products: Hot rolled, cold rolled, pickle and oiled, galvanized, galvannealed, aluminized and galvalume

Michigan
Detroit: Automotive Sales office
North American Production: 2.5 million tons (estimated for 2013)
Markets Served: Automotive, Pipe and Tube, Appliance/HVAC, Construction, Steel Service Centers, Heavy Equipment, Distribution.

UNITED STATES STEEL CORPORATION
North American Locations
Headquarters: Pittsburgh, PA
United States
Alabama
Fairfield: Slabs, rounds, sheets, seamless tubular mill
Arkansas
Pine Bluff: Tubular couplings
California
Pittsburg: JV USS-POSCO Industries (sheets and tin mill) and JV United Spiral Pipe, LLC (spiral welded tubular)
Illinois
Granite City: Sheets, slab and coke
Indiana
East Chicago: Tin mill
Gary: Slabs, tin mill, sheets, strip mill plate, coke
Portage: JV Chrome Deposit Corporation (processing, administrative)
Portage: Sheets and tin mill

Michigan
Canton: JV Worthington Specialty Processing (steel processing)
Dearborn: JV Double Eagle Steel Coating Company (galvanized sheets)
Ecorse and River Rouge: Slabs and sheets
Ishpeming: Tilden Mining Company (Iron ore pellets, ownership interest)
Jackson: JV Worthington Specialty Processing (steel processing)
Taylor: JV Worthington Specialty Processing (steel processing)
Troy: Research, development and sales center

Minnesota Mining Operations
Hibbing: Hibbing Taconite Company (iron ore pellets, ownership interest)
Keewatin: Keetac Iron Ore Operations (iron ore pellets)
Mt. Iron: Minnitan Iron Ore Operations (iron ore pellets)

Mississippi
Jackson: JV Double G Coatings Company, L.P. (galvanized and GALVALUME® sheets)

Ohio
Leipsic: JV PRO-TEC Coating Company (galvanized sheets)
Lorain: Seamless tubular

Pennsylvania
Braddock: Slabs
Clairton: Coke
Fairless Hills: Galvanized sheets
McKeesport: Welded tubular
Munhall: Research and Technology Center
West Mifflin: Sheets

Texas
Bellville: Welded tubular
Hughes Springs: Tubular couplings

Houston: Tubular couplings, processing, threading, inspection and storage service, research and development center
Lone Star: Welded tubular

CANADA
Alberta
Calgary: U.S. Steel Tubular Products Canada Sales Office

Ontario
Hamilton: JV Baycoat (finishing)
Hamilton: Hamilton Works (steelmaking, finishing, coke production)
Nanticoke: Lake Erie Works (steelmaking, finishing, coke production)
Stoney Creek: JV D.C. Chrome Limited (processing and joint venture)

MEXICO
Coahuila
Ramos Arizpe: JV Acero Prime (processing, warehousing)

Mexico State
Toluca: JV Acero Prime (processing, warehousing)
San Luis Potosi
San Luis Potosi: JV Acero Prime (processing, warehousing)

North American Production: 24.3 million tons

USS-POSCO INDUSTRIES

North American Locations
Headquarters: Pittsburg, CA

California
Pittsburg: Sheet products and tin mill

North American Production: 1 million tons

NOTE: JV stands for joint venture
Associate Members

Accenture
ADS Logistics Co LLC
Aether DBS
AKJ Industries, Inc.
Albemarle Environmental Division
Algoma Central Corporation
Almatis, Inc.
Alphabet Energy
Alpha Natural Resources
American Steamship Company
ASKO, Inc.
ATSI, Inc.
Avalotis Corporation
Babst, Calland, Clements & Zomnir, P.C.
Bahco
Bailey PVS Oxides
Baosteel America Inc.
Barnes & Thornburg
BASF Corporation
Beemsterboer Slag Corporation
Berkeley Research Group, LLC
Berry Metal Company
Bricmont, Inc.
Carmeuse Lime and Stone
Castrip, LLC
Castrol Industrial North America Inc.
Cattron Group International
ChemTreat, Inc.
Consolidated Terminals and Logistics Co.
Core Furnace Systems Corporation
CSX Transportation
Danielli Corporation
The David J. Joseph Company
Deublin Company
Drives LLC
Eckert Seamans Cherin & Mellott
Edw. C. Levy Company
Eramet North America, Inc.
Feralloy Corporation
First River
Fritz Enterprises, Inc.

GrafTech International Ltd.
Hatch
Heffernan International
Heraeus Electro-Nite Company, LLC
Heritage Environmental
Hilti, Inc.
HYDAC International
Hydrochem Industrial Services, Inc.
IAT International, Inc.
Independent Equipment Company
INTEG Process Group, Inc.
The Interlake Steamship Company
INTL FC Stone
Itipack Systems Inc.
ITW Buildex
JMC Steel Group
K & L Gates LLP
Kelley Drye & Warren LLP
Kenilworth Steel Company
Kvaerner North American Construction Inc.
Lapham-Hickey Steel Corporation
Lhoist North America
The Lincoln Electric Company
Magneco/Metrel, Inc.
Magnesita Refractories Company
Magotteaux, Inc.
Metal Strategies, Inc.
M.K. Technologies Inc.
Nalco Company
National Material, L.P.
New Millenium Building Systems
Nippon Steel USA, Inc.
Norfolk Southern Corporation
North American Refractories Company
Northrop Grumman Corporation
Oliver Steel Plate Company
O’Neal Steel, Inc.
Oracle
Otto Wolf U.S. Sales Corp.
Pacesetter Steel Service, Inc.
Pepper Hamilton LLP
PGT Trucking, Inc.
P.I. & I. Motor Express
PLS Logistics Services
POSGO America Corp.
Praxair, Inc.
PricewaterhouseCoopers LLP
Primary Energy Recycling Corporation
PSC Metals, Inc.
Quail Run Building Materials, Inc.
Reference Metals Company
River Hill Coal Company
Robindale Energy & Associated Companies
S & S Intersource LLC
Sector3 Appraisals, Inc.
SES, LLC
SGL Carbon Corporation, LLC
The Shaw Group Inc.
Showa Denko Carbon, Inc.
Siemans Industry Inc.
Silgan Containers Corporation
SMS Mill Services, LLC
SMS Siemag LLC
Squire, Sanders & Dempsey LLP
Steel Technologies
Steel Traders
Steelfast Framing Systems, Inc.
Steelscape, Inc.
SunCoke Energy Company
System Alternatives International
Tampa Port Authority
Telling Industries
Tenova Goodfellow Inc
TMEIC–GE
Tube City IMS, LLC
Uhde Corporation of America
Unconventional Solutions, Inc.
U.S. Geological Survey
Veolia Water North America
Vesuvius USA Corp.
Woodings Industrial Corporation
Xcoal Energy & Resources
Xtek, Inc.
2012–2013 Board of Directors

Joseph A. Carrabba
Chairman, President, and
Chief Executive Officer
Cliffs Natural Resources, Inc.

Steve Harker
President
Kvaerner North American Construction

David Ruud
President
DTE Energy Services

William Chisholm
Chief Executive Officer
ArcelorMittal Mexico

Regulo Salinas
Vice President
Ternium Mexico

Christian Dohr
President and Chief Executive Officer
ThyssenKrupp Steel USA

Juergen G. Schachler
President and Chief Executive Officer
ArcelorMittal Dofasco

Miguel Elizondo
Sales and Marketing Director
Altos Hornos de Mexico, S.A.

Kevin Kim
President
USS-POSCO Industries

Chuck Schmitt
President
SSAB Americas

John J. Ferriola
Chief Executive Officer and President
Nucor Corporation

John P. Surma
Chairman and Chief Executive Officer
United States Steel Corporation

Ivan Flores
President
Compania Siderurgica Huachipato, S.A.

Toshiyuki “Ted” Tamai
President and Chief Executive Officer
California Steel Industries, Inc.

Thomas J. Gibson
President and Chief Executive Officer
American Iron and Steel Institute

Ward J. Timken, Jr.
Chairman
The Timken Company

Raul Gutierrez
Director General
DEACERO, SA de CV

Guilherme Johannpeter
President and Chief Executive Officer
Gerdau Long Steel North America

Guillermo F. Vogel
Vice Chairman of the Board
TenarisTamsa

Steve Harker
President
Kvaerner North American Construction

Michael Monberg
Chief Commercial Officer
Harsco Metals & Minerals

James L. Wainscott
Chairman, President and
Chief Executive Officer
AK Steel Corporation

Michael T. Rehwinkel
Chief Executive Officer
EVRAZ North America

Giorgio Piliu
President
Heico 2004 Member Inc.

Michael Rippey
President and Chief Executive Officer
ArcelorMittal USA

Sergei A. Kuznetsov
President and Chief Executive Officer
Severstal North America, Inc.